
SURVEY ART I C L E

The progress, challenges, and perspectives of directed greybox
fuzzing

Pengfei Wang | Xu Zhou | Tai Yue | Peihong Lin | Yingying Liu | Kai Lu

College of Computer, National University of
Defense Technology, Changsha, China

Correspondence
Pengfei Wang, College of Computer, National
University of Defense Technology, No.109
Deya Road, Kaifu District, Changsha, China.
Email: pfwang@nudt.edu.cn

Funding information
National University of Defense Technology
Research Project, Grant/Award Numbers:
ZK20-17, ZK20-09; National Natural Science
Foundation China, Grant/Award Numbers:
62272472, U22B2005, 61972412; HUNAN
Province Natural Science Foundation,
Grant/Award Number: 2021JJ40692

Summary
Greybox fuzzing is a scalable and practical approach for software testing.
Most greybox fuzzing tools are coverage-guided as reaching high code cover-
age is more likely to find bugs. However, since most covered codes may not
contain bugs, blindly extending code coverage is less efficient, especially for
corner cases. Unlike coverage-guided greybox fuzzing which increases code
coverage in an undirected manner, directed greybox fuzzing (DGF) spends
most of its time allocation on reaching specific targets (e.g. the bug-prone
zone) without wasting resources stressing unrelated parts. Thus, DGF is par-
ticularly suitable for scenarios such as patch testing, bug reproduction, and
special bug detection. For now, DGF has become an active research area.
However, DGF has general limitations and challenges that are worth further
studying. Based on the investigation of 42 state-of-the-art fuzzers that are
closely related to DGF, we conducted the first in-depth study to summarize
the empirical evidence on the research progress of DGF. This paper studies
DGF from a broader view, which takes into account not only the location-
directed type that targets specific code parts but also the behavior-directed
type that aims to expose abnormal program behaviors. By analyzing the bene-
fits and limitations of DGF research, we try to identify gaps in current
research, meanwhile, reveal new research opportunities and suggest areas for
further investigation.

KEYWORDS
directed greybox fuzzing, location directed fuzzing, target directed fuzzing

1 | INTRODUCTION

Fuzzing is an automated software testing approach proposed by Barton Miller in 1989 [1]. By repeatedly and randomly
mutating the inputs to the program under test (PUT), fuzzing is effective and practical in vulnerability detection. As one
of the most efficient and scalable fuzzing categories, greybox fuzzing [2–7] has developed rapidly in recent years. Based
on the feedback information from the execution of the PUT, greybox fuzzers use an evolutionary algorithm to generate
new inputs and explore paths. Greybox fuzzing is widely used to test application software, libraries [8, 9], kernel code
[10–12], and protocols [13–15]. Most greybox fuzzing tools are coverage-guided, which aim to cover as many program
paths as possible within a limited time budget. This is because, intuitively, reaching high code coverage is more likely to
find bugs. However, it is not appropriate to treat all codes of the program as equal because most covered codes may not
contain bugs. For example, according to Shin et al. [16], only 3% of the source code files in Mozilla Firefox have vulnera-
bilities. Thus, testing software by blindly extending code coverage is less efficient, especially for corner cases. Since achiev-
ing full code coverage is difficult in practice, researchers have been trying to target the vulnerable parts of a program to
improve efficiency and save resources. Directed fuzzing is proposed as a means of achieving this aim [17].

Pengfei Wang and Xu Zhou contributed equally to this work and should be regarded as co-first authors on this work.

Received: 10 January 2023 Revised: 27 September 2023 Accepted: 12 November 2023

DOI: 10.1002/stvr.1869

Softw Test Verif Reliab. 2023;e1869. wileyonlinelibrary.com/journal/stvr © 2023 John Wiley & Sons, Ltd. 1 of 33
https://doi.org/10.1002/stvr.1869

https://orcid.org/0000-0003-3408-4153
mailto:pfwang@nudt.edu.cn
https://doi.org/10.1002/stvr.1869
http://wileyonlinelibrary.com/journal/stvr
https://doi.org/10.1002/stvr.1869

Unlike coverage-based fuzzers that blindly increase the path coverage, a directed fuzzer focuses on target locations
(e.g. the bug-prone zone) and spends most of its time budget on reaching these locations without wasting resources stres-
sing unrelated parts. Originally, directed fuzzers were based on symbolic execution [17–20], which uses program analysis
and constraint solving to generate inputs that exercise different program paths. Such directed fuzzers cast the reachability
problem as an iterative constraint satisfaction problem [21]. However, since directed symbolic execution (DSE) relies on
heavy-weight program analysis and constraint solving, it suffers from scalability and compatibility limitations.

In 2017, Böhme et al. introduced the concept of directed greybox fuzzing (DGF) [21]. Greybox fuzzing generates
inputs by mutating seeds. By specifying a set of target sites in the PUT and leveraging lightweight compile-time instru-
mentation, a directed greybox fuzzer can use the distance between the input and the target as the fitness function to assist
seed selection. By giving more mutation chances to seeds that are closer to the target, it can steer the greybox fuzzing to
reach the target locations gradually. Unlike traditional fuzzing techniques, DGF casts reachability as an optimization
problem whose aim is to minimize the distance between generated seeds and their targets [21]. Compared with DSE,
DGF has much better scalability and improves efficiency by several orders of magnitude. For example, Böhme et al. can
reproduce the Heartbleed vulnerability within 20 min, while the DSE tool KATCH [20] needs more than 24 hours [21].
Motivation. For now, DGF has become a research hot spot and it is growing very fast. It has evolved beyond the origi-
nal pattern that depends on manually labeled target sites and distance-based metrics to prioritize the seeds. New fitness
metrics, such as trace similarity and vulnerability prediction models, are used. Current DGF tools can not only identify
targets automatically but also expose target program behavior in a directed manner. A great number of variations have
been used to boost software testing under different scenarios, such as patch testing [22–24], regression testing [25, 26],
bug reproduction [24, 27, 28], knowledge integration [29], result validation [30–33], energy-saving [15] and special bug
detection [15, 24, 34–38]. Though fast-growing and useful, DGF has general limitations and challenges that are worth
further study. Against this background, we conduct this work to summarize the empirical evidence on the research pro-
gress of DGF. Based on the analysis of the benefits and limitations of DGF research, we try to identify gaps in current
research, meanwhile, reveal new research opportunities, and suggest areas for further investigation.
Research questions. We conduct the first in-depth study of DGF in this work. To study DGF from a broader view, we
take into account not only the location-directed type that targets specific code parts but also the behavior-directed type
that targets exposing abnormal program behaviors to find bugs. In summary, we design the following research
questions:

• RQ1: How the target identification method is changed in the up-to-date research of DGF?
• RQ2: In addition to distance, are there any new fitness metrics in the recent development of DGF?
• RQ3: How the recent DGF tools are optimized regarding the key steps of fuzzing?
• RQ4: What are the challenges of the DGF research? Are there any potential solutions?
• RQ5: What are the typical applications of DGF? How to choose a DGF tool for a specific application scenario?
• RQ6: What are the perspectives on the future trends in DGF research?

In this work, we make the following contributions.

- We investigate 42 state-of-the-art fuzzers that are closely related to DGF to systemize recent progress in the field and
answer research questions RQ1, RQ2, and RQ3.

- Based on the analysis of the known works, a summary of five challenges to DGF research is provided. We discuss
these challenges with examples and disclose the deep reasons behind them, aiming to propose possible solutions to
address them and answer RQ4.

- Based on the fast-growing rate of DGF tools, we summarize the typical application scenarios of DGF and provide
suggestions on how to choose a DGF tool for a specific application scenario, which answers RQ5.

- We make suggestions in terms of the perspectives for the research points of DGF that are worth exploring in the
future, aiming to facilitate and boost research in this field and answer RQ6.

2 | BACKGROUND

2.1 | Blackbox fuzzing

Blackbox fuzzing is the original and simplest form of fuzzing [1]. The workflow of blackbox fuzzing is represented by
the blue long dashed lines in Figure 1. It randomly mutates the inputs and then tests the PUT with these modified

2 of 33 WANG ET AL.

inputs. The procedure can be repeatedly executed to generate as many new inputs as needed. However, since blackbox
fuzzing does not support any feedback scheme, the inputs are generated blindly. Thus, the code coverage is usually low,
and most of the generated inputs are invalid or redundant, resulting in low testing efficiency. Though simple and less
efficient, blackbox fuzzing can be effective in finding security vulnerabilities, especially for testing scenarios where the
feedback scheme of greybox fuzzing is difficult to realize, such as protocol testing [13, 39–42].

2.2 | Coverage-guided greybox fuzzing (CGF)

CGF aims to maximize the code coverage to find hidden bugs. By introducing a feedback scheme, the fuzzing status
(i.e. whether a new path is explored) can be leveraged to guide the generation of new inputs. Figure 1 shows the work-
flow of CGF, where the components shown in the white boxes are the common steps used by almost all the fuzzing
approaches, while the components shown in the green boxes are critical steps for CGF. The testcase in CGF can be gen-
erated in a mutational or generational way, and a typical mutational CGF includes the following steps:

• Seed selection. Select a proper seed (usually considered as high quality) from the seed queue for mutation;
• Power schedule. Determine the energy (i.e. the number of mutation chances) assigned to the selected seed;
• Mutation. Mutate the seed with a set of pre-defined mutation strategies to generate test inputs;
• Execution. Run the PUT with the test inputs to monitor whether a new path is exercised. If a new path is triggered,
the input is added to the queue as a new seed.

Here we take the widely used tool AFL (American fuzzy lop) [43] as a representative to illustrate the principle of
CGF. AFL is a prevalently used coverage-based greybox fuzzer, and many state-of-the-art greybox fuzzers [44–48] are
built on top of it. AFL uses lightweight instrumentation to capture basic block transitions at compile-time and gain
coverage information during run-time. It then selects a seed from the seed queue and mutates the seed to generate test
cases. If a test case exercises a new path, it is added to the queue as a new seed. AFL favors seeds that trigger new paths
and gives them preference (i.e. more energy) over the nonfavoured ones. Compared with other instrumented fuzzers,
AFL has a modest performance overhead. However, though some tools (e.g. Fairfuzz [49]) try to reach the rare part of
a code, most greybox fuzzers treat all codes of the program as equal. Thus, CGF is less efficient as effort is wasted on
nonbuggy areas.

F I GURE 1 Workflow of different fuzzing approaches.

WANG ET AL. 3 of 33

2.3 | DGF

Unlike CGF which blindly increases path coverage, DGF aims to reach a set of pre-identified locations in the code
(potentially the buggy parts) and spends most of its time budget on reaching target locations without wasting resources
stressing unrelated parts. To describe the DGF principle, we use AFLGo [21] as an example. AFLGo follows the same
general principles and architecture as CGF. At compile-time, except for instrumentation, AFLGo also calculates the
distances between the input and predefined targets. The distance is calculated as the average weight of the execution
trace to the target basic blocks. The execution trace weight is determined by the number of edges in the call graph and
control-flow graphs of the program. Then, at run-time, AFLGo [21] prioritizes seeds based on distance instead of new
path coverage and gives preference to seeds closer to the targets at basic block level distance. Böhme et al. [21] view the
greybox fuzzing process as a Markov chain that can be efficiently navigated using a “power schedule”. They leveraged
a simulated annealing strategy to gradually assign more energy to a seed that is closer to targets than to a seed that is
further away. They cast reachability as an optimization problem to minimize the distance between the generated seeds
and their targets [44]. Similar to CGF, in Figure 1, the components shown in the green boxes are also critical steps for
DGF, and DGF is mainly optimized via these steps.

The exploration–exploitation problem. DGF fuzzing is a two-part method, which is readily separated into phases of
exploration and exploitation [21]. The exploration phase is designed to uncover as many paths as possible. Like many
coverage-guided fuzzers, DGF in this phase favors seeds that trigger new paths and prioritizes them. This is because
new paths increase the potential to lead to targets, and it is particularly necessary when the initial seeds are quite far
from their targets. Then, based on the known paths, the exploitation phase is invoked to drive the engine to the target
code areas. In this phase, Böhme et al. [21] prioritize seeds that are closer to the targets and assign more energy to them.
The intuition behind this is that if the path that the current seed executes is closer to any of the expected paths that can
reach the target, more mutations on that seed should be more likely to generate expected seeds that fulfill the demands.
The exploration–exploitation trade-off lies in how to coordinate these two phases. Böhme et al. [21] use a fixed splitting
of the exploration and exploitation phases. For example, in a 24-hour test, AFLGo assigns 20 hours for exploration
and then 4 hours for exploitation.

2.4 | Directed whitebox fuzzing

A directed whitebox fuzzer [50] is mostly implemented into a symbolic execution engine such as KLEE [51],
KATCH [20] and BugRedux [52]. DSE uses program analysis and constraint solving to generate inputs that systemati-
cally and effectively explore the state space of feasible paths [18]. In Figure 1, the constraint-solving component in the
red box is mandatory for whitebox fuzzing but optional for DGF. Once a target path is identified, potential solutions
to the path constraints are explored by creating test cases. Since most paths are actually infeasible, the search usually
proceeds iteratively by finding feasible paths to intermediate targets. Unlike DGF, which casts reachability as an

4 of 33 WANG ET AL.

optimization problem to minimize the distance between generated seeds and their targets [21], DSE casts the reachabil-
ity problem as an iterative constraint satisfaction problem [21]. DSE is effective in various scenarios, such as reaching
error-prone program locations (e.g. critical syscalls [53]), testing code patches [20, 54, 55], exercising corner paths to
increase coverage [56], and reproducing failures in-house [52, 57].

However, DSE’s effectiveness comes at the cost of efficiency. The heavy-weight program analysis and constraint
solving of DSE are rather time-consuming. At each iteration, DSE utilizes program analysis techniques to identify
branches that can be negated to get closer to the target. Then, based on the sequence of instructions along these paths,
it constructs the corresponding path conditions. Finally, it checks the satisfiability of those conditions using a constraint
solver. DGF is capable of producing a far greater number of inputs in a given timeframe than DSE can achieve [21].
Böhme et al. have demonstrated with experiments that DGF outperforms DSE both in terms of effectiveness and effi-
ciency. For example, AFLGo can expose the Heartbleed vulnerability in 20 min, while the DSE tool KATCH cannot
even in 24 hours [21].

2.5 | Search-based software testing (SBST)

SBST formulates a software testing problem into a computational search problem that can be optimized with meta-
heuristic search techniques, such as hill-climbing, simulated annealing, and genetic algorithms [58]. The key to the opti-
mization process is defining a problem-specific fitness function, which guides the search by measuring the quality of
potential solutions from a possibly infinite search space. Greater fitness values are assigned to those inputs that provide
data closer to the focal point in the program [59]. The original use of SBST was structural coverage testing [60], includ-
ing path and branch coverage. The path taken through the PUT is compared with some structure of interest for which
coverage is sought [59]. The fitness function usually incorporates two metrics—approach level and branch distance [61].
The complete fitness value is computed by normalizing the branch distance and adding it to the approach level [59]. In
addition to structural testing, SBST can also be used for functional testing [62, 63], temporal testing [64–66], robustness
testing [67], integration testing [68, 69], regression testing [70], stress testing [71], mutation testing [72], interaction test-
ing [73–75], state testing [76–78] and exception testing [79, 80]. The main difference between fuzzing and SBST is that
fuzzing uses lightweight and scalable heuristics to maintain and evolve a population of test inputs, whereas SBST
approaches typically use an optimization formula to search for ideal test cases [81].

Though SBST and DGF are close, they are different. For example, fuzzing uses lightweight instrumentation to guide
the evolution; thus, it is simpler than the computational search optimization in SBST. Besides, the search optimization of
SBST might be trapped by the local optimal solution, while DGF can escape the local optimal solution more quickly due
to the randomness of fuzzing. In this paper, we focus on DGF and provide the most up-to-date research progress.

3 | METHODOLOGY

This section introduces the methodology we adopted when conducting this research. The motivation and research ques-
tions have been introduced in Section 1; thus, here, we only describe the other key elements in a review protocol.

3.1 | Inclusion and exclusion criteria

This paper defines a tool as a directed greybox fuzzer from a broader view, namely, that a fuzzer either reaches specific
target locations or triggers specific program buggy behavior by optimizing a customized fitness function. The following
inclusion criteria are thus specified, which also serve as the definition of DGF in this paper.

- The core mechanism should be greybox fuzzing, which relies on the instrumentation of the PUT and includes the key
steps of seed prioritization, power scheduling, and mutator scheduling.

- The directedness is realized by optimizing the fitness metric in the key steps of greybox fuzzing, which includes input
optimization, seed prioritization, power scheduling, mutator scheduling and mutation operations.

- The fitness goal is to reach a specific site or to trigger certain buggy behavior of a program. The site could be a manu-
ally labeled target or a potential bug location predicted automatically, such as by machine learning [30–32] or static
analysis [33]. The target buggy behavior could be a nonfunctional property (e.g. memory consumption [34]) or a cer-
tain bug type (e.g. algorithmic complexity vulnerability [37]).

WANG ET AL. 5 of 33

We classify a DGF tool as directed for target location type when its object is reaching target sites, and the fitness
metric can be measured visibly on a concrete structure, such as on the execution trace, the control-flow graph, or the
call-graph. The target can be a single location, a set of basic blocks, or a sequence of ordered call sites. In contrast, if a
DGF tool is directed with a certain fitness metric but without a fixed target, then it is classified as directed for target
behavior. For this type, the targets need not or cannot be prelabelled, and the fitness metric is not as visible as the first
type. With the optimization of the fitness function, a target can be reached automatically and the buggy behavior will
be exposed.

However, to concentrate on the research of DGF, the following types of papers will be excluded.

- Directed whitebox fuzzing realized only via symbolic execution (we still include directed hybrid fuzzing papers that
assist DGF with symbolic execution)

- Papers on SBST
- Informal literature reviews and technical reports
- Too short papers (less than four pages) without a clear description of the approach or the evaluation.

3.2 | Search process

The search process consists of three rounds. The first round is a manual search of specific conference proceedings and
journal papers via an academic search engine with keywords, which includes the following steps.

(1) The publications are initially collected from the proceedings of the top-level conferences on security and software
engineering since 2017. Alphabetically, ACM Conference on Computer and Communications Security (CCS),
IEEE Symposium on Security and Privacy (S&P), USENIX Security Symposium (Sec), Network and Distributed
System Security Symposium (NDSS) and International Conference on Software Engineering (ICSE), ACM Inter-
national Symposium on the Foundations of Software Engineering ESEC/FSE) and IEEE/ACM International Con-
ference on Automated Software Engineering (ASE). We searched with “DGF” and “directed fuzzing”. We
collected 19 papers.

(2) Then, we used Google Scholar to search for works from journals and preprints by searching with keywords includ-
ing “DGF”, “directed fuzzing” and “targeted fuzzing”. We collected 15 papers.

(3) After that, we referred to a popular fuzzing paper repository2 and manually selected papers related to DGF. We
also refer to another paper repository that only collects papers related to directed fuzzing3. We collected 21 papers.

Then, in the second round, we filter out the duplicates from the collection in the previous round. When a paper has
been published in more than one journal/conference, the most complete version will be used. As a result, 49 papers
remained.

In the third round, we read each paper we collected and filtered out the papers based on the research content with
the inclusion and exclusion criteria from Section 3.1. Finally, 42 papers ranging from 2017.1 to 2022.5 (listed in
Table 1) remained for further investigation.

3.3 | Data collection

First, we interviewed at least 10 researchers to list the important aspects of DGF tools they care about. The researcher
includes postgraduate students, PhD students, and faculties. Then, we summarized the suggestions and extracted the
aspects that they care about most. Based on this, the data extracted from each paper will be:

• The publication source (i.e. the conference, journal, or preprint) and year.
• The fitness goal. To reach what kind of target sites (e.g. vulnerable function) or to expose what target bugs?
• The fitness metric used in the evolutionary process of fuzzing. For example, the distance to the targets.
• How the targets are identified or labeled? For example, predicted by deep learning models.
• The implementation information. What tool is the fuzzer implemented based on? Is the fuzzer open-sourced?
• Whether the tool support binary code analysis?
• Whether the tool support kernel analysis?
• Whether the tool support multi-targets searching?
• Whether the tool support multi-objective optimization?

6 of 33 WANG ET AL.

T
A
B
L
E

1
C
ol
le
ct
io
n
of

di
re
ct
ed

gr
ey
bo

x
fu
zz
er
s.

C
at
eg
or
y

T
oo
ls

P
ub
lic
at
io
n

Fi
tn
es
s
go
al

Fi
tn
es
s
m
et
ri
c

T
ar
ge
t

id
en
tif
y

B
as
e
to
ol

B
in
ar
y

su
pp
or
t

K
er
ne
l

su
pp
or
t

O
pe
n

so
ur
ce
d

M
ul
ti-

ta
rg
et
s

M
ul
ti-

ob
je
ct
iv
e

D
ir
ec
te
d
fo
r

ta
rg
et

lo
ca
ti
on

A
F
L
G
o
[2
1]

C
C
S’
17

T
ar
ge
t
si
te
s

D
is
ta
nc
e

M
an

ua
ll
ab

el
A
F
L

�
�

✓
✓

�

Se
m
F
uz
z
[2
2]

C
C
S’
17

T
ar
ge
t
fu
nc
ti
on

/s
it
e

D
is
ta
nc
e

A
ut
om

at
ic
by

N
L
P

Sy
zk
al
le
r

�
✓

�
✓

�

H
aw

ke
ye

[8
2]

C
C
S’
18

T
ar
ge
t
si
te

D
is
ta
nc
e

M
an

ua
ll
ab

el
A
F
L

�
�

�
✓

�
L
O
L
L
Y

[8
3]

IC
P
C
’1
9

T
ar
ge
t
se
qu

en
ce

Se
qu

en
ce

co
ve
ra
ge

M
an

ua
ll
ab

el
A
F
L

�
�

�
✓

�
T
A
F
L
[8
4]

IC
SE

’1
9

V
ul
ne
ra
bl
e
re
gi
on

C
us
to
m
iz
ed

pa
th

w
ei
gh

ts
St
at
ic se
m
an

ti
c

an
al
ys
is

A
F
L

�
�

✓
✓

�

D
ri
lle
rG

o
[2
8]

C
C
S’
19

V
ul
ne
ra
bl
e
fu
nc
ti
on

C
ov

er
ag
e

M
an

ua
lly

ba
se
d
on

C
V
E
in
fo

A
F
L

A
ng

r
�

�
�

�

1D
V
U
L
[2
3]

D
SN

’1
9

B
in
ar
y
pa

tc
he
s

D
is
ta
nc
e

B
in
ar
y
di
ff
in
g

D
ri
lle
r

Q
E
M
U

�
�

✓
�

W
üs
th
ol
z
[8
5]

A
rx
iv
’1
9

T
ar
ge
t
si
te
s

P
at
h
re
ac
ha

bi
lit
y

St
at
ic
an

al
ys
is

H
A
R
V
E
Y

B
R
A
N

�
�

✓
�

SU
Z
Z
E
R

[3
1]

IC
IS
C
’1
9

V
ul
ne
ra
bl
e
fu
nc
ti
on

V
ul
ne
ra
bl
e

pr
ob

ab
ili
ty

P
re
di
ct

by
de
ep

le
ar
ni
ng

V
U
zz
er

ID
A

�
�

✓
�

V
-F
uz
z
[3
0]

T
C
M
’2
0

V
ul
ne
ra
bl
e
fu
nc
ti
on

V
ul
ne
ra
bl
e

pr
ob

ab
ili
ty

P
re
di
ct

by
de
ep

le
ar
ni
ng

V
U
zz
er

ID
A

�
�

✓
�

D
eF

uz
z
[3
2]

A
rx
iv
’2
0

V
ul
ne
ra
bl
e
lo
ca
ti
on

V
ul
ne
ra
bl
e

pr
ob

ab
ili
ty

P
re
di
ct

by
de
ep

le
ar
ni
ng

A
F
L
G
o

�
�

�
✓

�

A
F
L
P
ro

[8
6]

JI
SA

’2
0

Sa
ni
ty

ch
ec
ks

M
ul
ti
-d
im

en
si
on

al
fi
tn
es
s

A
ut
om

at
ic

A
F
L

Q
E
M
U

�
�

✓
✓

T
or
to
is
eF

uz
z
[2
7]

N
D
SS

’2
0

V
ul
ne
ra
bl
e
fu
nc
ti
on

Se
ns
it
iv
e
ed
ge

hi
t

ra
te

M
an

ua
lly

ba
se
d
on

C
V
E
in
fo

A
F
L

�
�

�
✓

�

B
er
ry

[8
7]

SA
N
E
R
’2
0

T
ar
ge
t
se
qu

en
ce

E
xe
cu
ti
on

tr
ac
e

si
m
ila

ri
ty

St
at
ic
an

al
ys
is

A
F
L

�
�

�
✓

�

R
D
F
uz
z
[8
8]

M
P
E
’2
0

T
ar
ge
t
si
te
s

D
is
ta
nc
e,
fr
eq
ue
nc
y

M
an

ua
ll
ab

el
A
F
L

�
�

�
✓

�
T
O
F
U

[8
9]

A
rx
iv
’2
0

T
ar
ge
t
si
te
s

D
is
ta
nc
e

M
an

ua
ll
ab

el
-

�
�

�
✓

�
G
T
F
uz
z
[9
0]

P
R
D
C
’2
0

G
ua

rd
to
ke
ns

D
is
ta
nc
e

St
at
ic
an

al
ys
is

A
F
L
G
o

�
�

�
✓

�
P
ar
m
eS
an

[3
3]

Se
c’
20

Sa
ni
ti
ze
r
ch
ec
ks

D
is
ta
nc
e

St
at
ic
an

al
ys
is

A
ng

or
a

�
�

✓
✓

�
U
A
F
uz
z
[2
4]

R
A
ID

’2
0

U
se
-a
ft
er
-f
re
e

Se
qu

en
ce

co
ve
ra
ge
;

A
ut
om

at
ic

A
F
L

Q
E
M
U

�
�

✓
�

(C
on

ti
nu

es
)

WANG ET AL. 7 of 33

T
A
B
L
E

1
(C

on
ti
nu

ed
)

C
at
eg
or
y

T
oo
ls

P
ub
lic
at
io
n

Fi
tn
es
s
go
al

Fi
tn
es
s
m
et
ri
c

T
ar
ge
t

id
en
tif
y

B
as
e
to
ol

B
in
ar
y

su
pp
or
t

K
er
ne
l

su
pp
or
t

O
pe
n

so
ur
ce
d

M
ul
ti-

ta
rg
et
s

M
ul
ti-

ob
je
ct
iv
e

U
A
F
L
[3
5]

IC
SE

’2
0

U
se
-a
ft
er
-f
re
e

O
pe
ra
ti
on

se
qu

en
ce

C
ov

er
ag
e

A
ut
om

at
ic

A
F
L

�
�

�
✓

�

F
uz
zG

ua
rd

[9
1]

Se
c’
20

T
ar
ge
t
si
te
s

D
is
ta
nc
e

M
an

ua
ll
ab

el
A
F
L
G
o

�
�

�
✓

�
B
E
A
C
O
N

[9
2]

S&
P
’2
1

T
ar
ge
t
si
te
s

D
is
ta
nc
e

M
an

ua
ll
ab

el
A
F
L
G
o

�
�

✓
✓

�
C
A
F
L
[9
3]

Se
c
’2
1

T
ar
ge
t
si
te
s

C
on

di
ti
on

s
to

th
e

ta
rg
et

M
an

ua
ll
ab

el
A
F
L

�
�

✓
✓

�

A
F
L
C
hu

rn
[2
6]

C
C
S
’2
1

T
ar
ge
t
si
te
s

D
is
ta
nc
e

A
ll
co
m
m
it
s

A
F
L

�
�

✓
✓

�
D
el
ta
F
uz
z
[2
5]

JC
ST

’2
1

T
ar
ge
t
si
te
s

D
is
ta
nc
e

C
ha

ng
e
po

in
t

A
F
L

�
�

�
✓

�
D
ir
ec
tF
uz
z
[9
4]

D
A
C
’2
1

T
ar
ge
t
si
te
s

D
is
ta
nc
e

M
an

ua
ll
ab

el
A
F
L

�
�

✓
✓

�
D
G
F
-C

F
G

C
on

st
ru
ct
or

[9
5]

M
D
P
I’
21

T
ar
ge
t
si
te
s

D
is
ta
nc
e

In
di
re
ct

ju
m
p

A
F
L
G
o

�
�

�
✓

�

K
C
F
uz
z
[9
6]

IC
A
IS
’2
1

T
ar
ge
t
si
te
s

K
ey
po

in
t
co
ve
ra
ge

St
at
ic
an

al
ys
is

A
F
L
G
o

�
�

�
�

�
W
in
dR

an
ge
r
[9
7]

IC
SE

’2
2

T
ar
ge
t
si
te
s

D
is
ta
nc
e

St
at
ic
an

al
ys
is

A
F
L

�
�

�
✓

�
D
ir
ec
te
d
fo
r

ta
rg
et

be
ha

vi
ou

r

Sl
ow

F
uz
z
[3
8]

C
C
S’
17

A
lg
or
it
hm

ic
C
om

pl
ex
it
y

V
ul
ne
ra
bi
lit
y

R
es
ou

rc
e
us
ag
e

A
ut
om

at
ic

L
ib
F
uz
ze
r

�
�

�
�

�

P
E
R
F
F
U
Z
Z
[3
7]

IS
ST

A
’1
8

A
lg
or
it
hm

ic
C
om

pl
ex
it
y

V
ul
ne
ra
bi
lit
y

C
ov

er
ag
e
an

d
ed
ge

hi
t
co
un

t
A
ut
om

at
ic

A
F
L

�
�

✓
✓

✓

T
IF

F
[9
8]

A
C
SA

C
’1
8

B
uf
fe
r
ov

er
fl
ow

,
In
te
ge
r
ov

er
fl
ow

N
ew

co
ve
ra
ge

M
an

ua
ll
ab

el
V
U
zz
er

�
�

�
�

�

Jo
ff
e
[9
]

IC
ST

’1
9

C
ra
sh

C
ra
sh

lik
el
ih
oo

d
Id
en
ti
fi
ed

by
m
ac
hi
ne

le
ar
ni
ng

A
F
L

�
�

�
✓

�

F
uz
zF

ac
to
ry

[9
9]

O
O
P
SL

A
’1
9

D
om

ai
n-
sp
ec
if
ic
go

al
D
om

ai
n-
sp
ec
if
ic

M
ul
ti
-

di
m
en
si
on

al
ob

je
ct
iv
es

A
ut
om

at
ic

A
F
L

�
�

✓
�

✓

R
V
F
U
Z
Z
E
R

[3
6]

Se
c’
19

In
pu

t
va
lid

at
io
n
bu

g
C
on

tr
ol

in
st
ab

ili
ty

A
ut
om

at
ic

-
✓

�
�

�
�

SA
V
IO

R
[1
00
]

S&
P
’2
0

O
ut
-o
f-
bo

un
da

ry
,

In
te
ge
r
ov

er
fl
ow

,
O
ve
rs
iz
ed

sh
if
t

B
ug

po
te
nt
ia
l

co
ve
ra
ge

A
nn

ot
at
e
by

U
B
Sa

n
A
F
L

�
�

�
✓

�

A
F
L
-H

R
[8
1]

IC
SE

W
’2
0

B
uf
fe
r
ov

er
fl
ow

,
In
te
ge
r
ov

er
fl
ow

C
ov

er
ag
e
an

d
he
ad

ro
om

A
ut
om

at
ic

A
F
L

�
�

�
✓

✓

8 of 33 WANG ET AL.

T
A
B
L
E

1
(C

on
ti
nu

ed
)

C
at
eg
or
y

T
oo
ls

P
ub
lic
at
io
n

Fi
tn
es
s
go
al

Fi
tn
es
s
m
et
ri
c

T
ar
ge
t

id
en
tif
y

B
as
e
to
ol

B
in
ar
y

su
pp
or
t

K
er
ne
l

su
pp
or
t

O
pe
n

so
ur
ce
d

M
ul
ti-

ta
rg
et
s

M
ul
ti-

ob
je
ct
iv
e

G
R
E
Y
H
O
U
N
D

[1
5]

T
D
SC

’2
0

V
ul
ne
ra
bl
e
be
ha

vi
ou

r
M
ul
ti
-d
im

en
si
on

al
co
st
fu
nc
ti
on

s
M
an

ua
lly

by
C
V
E

re
po

rt

A
F
L

�
�

�
✓

✓

M
em

lo
ck

[3
4]

IC
SE

’2
0

M
em

or
y
co
ns
um

pt
io
n

B
ug

M
em

or
y
us
ag
e
an

d
pa

th
C
ov

er
ag
e

A
ut
om

at
ic

A
F
L

�
�

�
✓

✓

IJ
O
N

[2
9]

S&
P
’2
0

D
ee
p
st
at
ef
ul

bu
g

P
at
h
co
ve
ra
ge

H
um

an
an

no
ta
ti
on

A
F
L

�
�

✓
✓

�

H
D
R
-F
uz
z
[1
01
]

A
rx
iv

’2
1

B
uf
fe
r
ov

er
ru
n

C
ov

er
ag
e
an

d
he
ad

ro
om

A
SA

N
A
F
L

�
�

�
✓

✓

M
D
P
E
R
F
F
U
Z
Z

[1
02
]

A
SE

’2
1

A
lg
or
it
hm

ic
C
om

pl
ex
it
y

V
ul
ne
ra
bi
lit
y

C
ov

er
ag
e
an

d
ed
ge

hi
t
co
un

t
A
ut
om

at
ic

P
E
R
F
F
U
Z
Z

�
�

�
✓

✓

WANG ET AL. 9 of 33

• What key steps in fuzzing are optimized to realize the directedness? Namely, input optimization, seed prioritization,
power scheduling, mutator scheduling, and mutation operations.

• What techniques are adopted in the optimization? Namely, control-flow analysis, static analysis, data-flow analysis,
machine learning, semantic analysis, and symbolic execution.

3.4 | Data analysis

The extracted data are tabulated (Table 1) to show the basic information about each study. Then we review the
extracted data and try to answer the research questions as follows:

RQ1: How is the target identification method changed in the up-to-date research on DGF? This will be addressed by
summarizing how the targets of the documented research are identified or labeled.

RQ2: In addition to distance, are there any new fitness metrics in the recent development of DGF? This will be
addressed by summarizing the fitness metrics of the documented research.

RQ3: How are the recent DGF tools optimized regarding the key steps of fuzzing? This will be addressed by analyzing
the documented research on the optimization of the key steps of fuzzing (i.e. input optimization, seed prioritiza-
tion, power scheduling, mutator scheduling, and mutation operations) to realize the directedness.

RQ4: What are the challenges of DGF research? Are there any potential solutions? We will summarize comprehensive
challenges for the DGF community based on the design and implementation of the documented research. For
the design, we consider the fitness goal, fitness metric, how the targets are identified, and optimizations on the
key fuzzing steps, while for implementation, we pay attention to efficiency and whether the tool supports binary,
kernel, multi-targets, and multi-objectives.

RQ5: What are the typical applications of DGF? How to choose a DGF tool for a specific application scenario? We
will summarize the typical application of DGF based on the fitness goals, how the targets are identified, and the
implementation details of the documented research.

RQ6: What are the perspectives and the future trends on DGF research? We will summarize future trends based on
the analysis of the challenges and limitations of the current DGF research.

4 | RESEARCH PROGRESS ON DGF

4.1 | Overview

Recently, DGF has been an active research area. To provide an overview of the DGF research, we summarize the fol-
lowing progress.

• In addition to the original fitness metric of distance, new fitness metrics have been adopted, such as sequence cover-
age, which is suitable for satisfying complex bug-triggering paths. Examples include UAFuzz [24], UAFL [35],
LOLLY [83], Berry [87] and CAFL [93]. Multi-dimensional fitness metrics are also proposed to detect hard-
to-manifest vulnerabilities. Examples include AFL-HR [81], HDRFuzz [101] and AFLPro [86].

• To facilitate target identification, tools based on machine learning can predict and label potential targets automati-
cally, examples include SUZZER [31], V-Fuzz [30], DeFuzz [32], and SemFuzz [22]. Meanwhile, CVE information,
commit changes, binary diffing techniques, and tools such as UBSan and AddressSanitizer, are adopted to label vari-
ous potential vulnerable code regions. Examples include DrillerGo [28], TortoiseFuzz [27], AFLChurn [26], GREY-
HOUND [15], DeltaFuzz [25], 1DVUL [23], SAVIOR [100] and HDR-Fuzz [101].

• The fuzzing process has been enhanced with various approaches, such as using data-flow analysis and semantic anal-
ysis to generate valid input, using symbolic execution to pass complex constraints. Examples include TOFU [89],
TIFF [98], SemFuzz [22], KCFuzz [96], 1DVUL [23] and SAVIOR [100].

• More complex algorithms are adopted to enhance directedness, such as ant colony optimization, optimized simulated
annealing, and particle swarm algorithm. Examples include AFLChurn [26], LOLLY [83], and GREYHOUND [15];

• To improve DGF efficiency, target unreachable inputs are filtered out in advance to save execution. Examples
include FuzzGuard [91] and BEACON [92].

• DGF has been used to detect specific bug types, such as memory consumption bugs, and algorithm complexity bugs.
Examples include MemLock [34], SlowFuzz [38], PERFFUZZ [37] and MDPERFFUZZ [102].

10 of 33 WANG ET AL.

However, current DGF research also suffers some limitations, such as overhead deduction, equal-weighted metric
bias, inflexible coordination of exploration and exploitation, source code dependence, lack of multi-object optimization,
and lack of multi-target coordination. In the following sections, we will discuss the above advantages and disadvantages
in detail.

4.2 | Target identification

According to the definition of DGF (described in Section 3.1), the fitness goal of DGF can be divided into two catego-
ries: directed for target locations and directed for targeted bugs. Among the tools we investigated, 69% are directed by
target locations, and 31% are directed by target bugs.

4.2.1 | Target locations

A barrier to most directed fuzzing strategies is the need for PUT target prelabelling [21, 82, 85, 88, 89]. Manual labeling
relies on the prior knowledge of the target sites, such as the line number in the source code or the virtual memory
address at the binary level, to label the target and steer the execution to the desired locations. According to our statis-
tics, 11 out of the 29 tools that target for locations need manual target labeling. However, obtaining such prior knowl-
edge is challenging, especially for the binary code. In order to set target sites reasonably and effectively, researchers use
auxiliary metadata, such as code changes from git commit logs [22], information extracted from bug traces [24], seman-
tics from CVE vulnerability descriptions [15, 27, 28], or deep learning models [30–32]. Such auxiliary metadata can help
identify vulnerable functions [27, 28, 30–32], critical sites [96], syntax tokens [90], sanity checks [33, 100], and patch-
related branches [23, 26] in the code and set such vulnerable code parts or sites as targets. Nevertheless, such target
identification schemes still rely on additional efforts to process the information and mark the target on the PUT. It is
unsuitable when fuzzing a PUT for the first time or when well-structured information is unavailable.

To improve automation, static analysis tools [33, 84, 85, 87, 103, 104] are used to automatically find potentially
dangerous areas in the PUT. However, these tools are often specific to the bug types and programming languages
used [33]. Another direction leverages compiler sanitizer passes (e.g. UBSan [105]) to annotate potential bugs in the
PUT [33, 100] or uses binary-level comparison (e.g. Bindiff [106]) to identify patch-related target branches [23]. Deep-
learning methods have been used to predict potentially vulnerable code at both binary [30, 31] and abstract syntax tree
level [32]. Finally, attack surface identification components [107] have also been used to identify vulnerable targets for
DGF automatically.

4.2.2 | Target bugs

Most of the DGF tools are designed for functional goals, such as AFLGo; they need to label the potential buggy loca-
tions as target sites, and the fitness metrics are designed for approaching the target sites. Such a scheme is suitable for
detecting memory corruption bugs with obvious crashes, such as overflow bugs. Among the tools we investigated, 81%
are designed for functional goals. However, DGF tools can also detect nonfunctional goals. For this purpose, they need
not label target sites, and the fitness metrics are designed to trigger such nonfunctional behavior. Among the tools we
investigated, 19% are designed for nonfunctional goals. For example, UAFuzz [24] and UAFL [35] leverage target
operation sequences instead of target sites to find use-after-free vulnerabilities whose memory operations (e.g. allocate,
use, and free memory) must be executed in a specific order. Memlock [34] uses memory usage as the fitness goal to find
uncontrolled memory consumption bugs. IJON [29] leverages annotations from a human analyst to overcome signifi-
cant roadblocks in fuzzing and find deep-state bugs. RVFUZZER [36] targets input validation bugs in robotic vehicles.
GREYHOUND [15] directs a Wi-Fi client to exhibit anomalous behaviors that deviate from Wi-Fi protocols. PERF-
FUZZ [37] generates pathological inputs to trigger algorithmic complexity vulnerabilities [37, 38]. For the type of DGF
tools that target specific bug types, since they do not need to label the target in the PUT, the fuzzer can identify and
trigger such bugs in an evolutionary way.

4.2.3 | Distribution of different targets

Based on the introduction of target identification in the previous subsections, we use Figure 2 to show the distribution
of different targets among the tools we investigated. For each category in Figure 2, the number before the comma

WANG ET AL. 11 of 33

indicates the absolute number, while the number after the comma represents the percentage. We can see that tools
directed for target sites account for the most (43%), followed by tools directed for target functions, accounting for 17%.
For tools directed by bug types, various bug types were considered; among them, memory corruption bug still accounts
for the most (14%). Thus, we can conclude that target locations (sites or functions) DGF is still the mainstream research
of DGF.

4.3 | Fitness metrics

The crux of DGF is using a fitness metric to measure how the current fuzzing status matches the fitness goal, so as to
guide the evolutionary process. We summarize the following fitness metrics used in DGF.

4.3.1 | Distance

Based on our investigation, 31% (13/42) of the directed greybox fuzzers follow the scheme of AFLGo by using the dis-
tance between the input and the target as the fitness metric. AFLGo [21] instruments the source code at compile-time
and calculates the distances to the target basic blocks by the number of edges in the call and control-flow graphs of the
PUT. Then at run-time, it aggregates the distance values of each basic block exercised to compute an average value to
evaluate the seed. It prioritizes seeds based on distance and gives preference to seeds that are closer to the target. We
use the example in Figure 3 to illustrate how the distance-based metric works. In Figure 3, each node represents a basic
block; T1 and T2 are the target basic blocks. The number beside each node indicates the harmonic mean of the dis-
tances from each basic block to the target basic blocks. We can calculate the global distances of two execution paths.
The distance of path A!B!E!J!O is (20/9 + 12/7 + 3)/3 ≈ 2.31, while the distance of path
A!C!F!K!P!Q is (20/9 + 4 + 3 + 2 + 1)/5 ≈ 2.44. Since dABEJO < dACFKPQ, the seed that corresponds to
path A!B!E! J!O will be prioritized.

Some follow-ups also update this scheme. TOFU’s distance metric is defined as the number of correct branching
decisions needed to reach the target [89]. RDFuzz [88] combines distance with the execution frequency of basic blocks
to prioritize seeds. UAFuzz [24] uses a distance metric of call chains leading to target functions that are more likely to
include both allocation and free functions to detect complex behavioral use-after-free vulnerabilities. Different from
using equal-weighted basic blocks in the traditional distance calculation, AFLChurn [26] assigns a numerical weight to
a basic block based on how recently or how often it has been changed; WindRanger [97] takes into account deviation
basic blocks (i.e., basic blocks where the execution trace starts to deviate from the target sites) when calculating dis-
tance. One drawback of the distance-based method is that it only focuses on the shortest distance, and thus, longer
options might be ignored when there is more than one path reaching the same target, leading to a discrepancy. An
example of this problem is depicted in Section 5.3. Another shortcoming is the considerable time cost when calculating

F I GURE 2 Distribution of different targets among the tools we investigated.

12 of 33 WANG ET AL.

the distance at the basic block level. On some target programs, users have reported that it can take many hours just to
compute the distance file. For example, AFLGo spent nearly 2 hours compiling and instrumenting cxxfilt (Binutils) to
generate the distance file, which is a non-negligible time cost.

4.3.2 | Similarity

The similarity is a metric that was first proposed by Chen et al. in Hawkeye [82], which measures the similarity between
the execution trace of the seed and the target execution trace on the function level. The intuition is that seeds covering
more functions in the “expected traces” will have more chances to mutate and reach the targets.

We use the execution tree example in Figure 4 to illustrate how the metric of similarity works. Suppose node T1 is
the target basic block, and execution trace A!C!F!L!Q!T1 is the expected trace to target T1. There are two
execution traces, A!C!F!K!N and A!C!F!L!P. We can say that trace A!C!F!L!P is more similar
to the expected trace A!C!F!L!Q!T1 than trace A!C!F!K!N. This is because trace A!C!F!L!P
covers four basic blocks that are overlapped with the expected trace, which is more than trace A!C!F!K!N (only
covers three). Thus, trace A!C!F!L!P is regarded as closer to the target than trace A!C!F!K!N.

F I GURE 3 Illustration of the distance metric.

F I GURE 4 Illustration of the similarity metric.

WANG ET AL. 13 of 33

Hawkeye [82] combines the basic block trace distance with covered function similarity for seed prioritization and
power scheduling. LOLLY [83] uses a user-specified program statement sequence as the target and takes the seed’s abil-
ity to cover target sequences (i.e. sequence coverage) as a metric to evaluate the seed. Berry [87] upgraded LOLLY by
taking into account the execution context of target sequences. This enhances the target sequences with “necessary
nodes” and uses the similarity between the target execution trace and the enhanced target sequence to prioritize the
seeds. The similarity is then enriched to cover other target forms, such as operations, bug traces, and labeled locations.
Formally, the similarity is the degree of overlap between the current status and target status of a certain metric, where the
metric includes the length of bug traces and the number of covered locations, covered operations, or covered functions.

UAFL [35] uses operation sequence coverage to guide the test case generation to progressively cover the operation
sequences that are likely to trigger use-after-free vulnerabilities. UAFuzz [24] also uses a sequence-aware target similar-
ity metric to measure the similarity between the execution of a seed and the target use-after-free bug trace. SAV-
IOR [100] prioritizes seeds that have a higher potential to trigger vulnerabilities based on the coverage of labels
predicted by UBSan [105]. TortoiseFuzz [27] differentiates edges that are closely related to sensitive memory operations
and prioritizes seeds based on the sensitive edge hit count in their execution paths.

For comparison, similarity-based metrics are better able to handle multi-target fitting than distance-based alterna-
tives. This is because the distance-based metric is designed primarily for single-target. When there are multiple targets,
a distance-based metric would calculate the distances to different targets one by one, which is less efficient. However,
the similarity-based metric can handle multiple targets at one time. For example, in Figure 4, when analyzing execution
trace A!C!F!K!N, we can calculate its similarity (i.e. the number of overlapped basic blocks) with the expected
traces to target T1 and T2 simultaneously, which is more efficient. Furthermore, similarity-based metrics can include
the relationships between targets, such as the ordering of the targets [24]. Finally, a distance-based metric is measured
at the basic block level, which would introduce considerable overheads, while a similarity-based metric can be extracted
from a relatively high level to improve overall efficiency.

4.3.3 | Vulnerability prediction models

Researchers also use vulnerability prediction models to quantify how likely a seed can reach a target. Using a deep
learning-based model, the vulnerable probability of a function can be predicted, and each basic block in the vulnerable
function is given a Static Vulnerable Score to measure the vulnerable probability. Then for each input, the sum of the
static vulnerable score of all the basic blocks on the execution path is used as a fitness score to prioritize inputs with
higher scores [30, 31]. Figure 5 illustrates how the vulnerable score metric works in V-Fuzz [30]. SVS is the static vulner-
able score for each basic block predicted by the deep learning-based model. We assume that there are two inputs i1 and
i2, and the execution paths of the two inputs are path1 and path2, respectively. Suppose path1 is b1 ! b2 ! b4, and path2
is b1 ! b3 ! b6 ! b8. The fitness score of input i1 and i2 are f 1 and f 2, respectively. Then, f 1 = 2 + 5 + 8 = 15, f 2 =
2 + 1 + 1 + 2 = 6. As f 1 is larger than f 2, the input i1 will be selected as a favoured seed.

TAFL [84] extracts semantic metrics of the PUT and uses static semantic analysis to label regions, including sensi-
tive, complex, deep, and rare-to-reach regions, that have a higher probability of containing vulnerabilities and
strengthen fuzzing towards such regions. Joffe [9] uses crash likelihood generated by a neural network to direct fuzzing
towards executions that are crash-prone. The probability-based metric can combine seed prioritization with target

F I GURE 5 Illustration of the vulnerable score metric.

14 of 33 WANG ET AL.

identification to direct fuzzing toward potentially vulnerable locations without relying on the source code. Using deep
learning models, a probability-based metric can be extended to targeting properties other than crashes, such as informa-
tion leaks, exploits, as well as specific crash types, and different resource usages. Besides, deep learning methods have
been proven to be able to detect several types of vulnerabilities simultaneously [30]. However, a major weakness is that
the accuracy at present is to some extent limited.

4.3.4 | Customized fitness metrics

Apart from the above categories, researchers also propose customized metrics for DGF. Wüstholz et al. [85] used online
static look-ahead analysis to determine a path prefix for which all suffix paths cannot reach a target location. Directed
fuzzing is then enabled by strategically scheduling the energy of fuzzing to stress the path prefix that might reach the
target locations. KCFuzz [96] defines the parent nodes in the path to the target as keypoints and directs fuzzing using
keypoint coverage. CAFL [93] aims to satisfy a sequence of constraints (i.e. the combination of a target site and the
data conditions) instead of reaching a set of target sites. It defines the distance of constraints as how well a given seed
satisfies the constraints and prioritizes the seeds that better satisfy the constraints in order. AFL-HR [81] and HDR-
Fuzz [101] adopt a vulnerability-oriented fitness metric called headroom, which indicates how closely a test input can
expose a hard-to-manifest vulnerability (e.g. buffer or integer overflow) at a given vulnerability location. PERF-
FUZZ [37] uses the new maxima of execution counts for all program locations as feedback to generate pathological
inputs. To systematically measure fitness, a customized fitness metric also takes into account multiple dimensions simul-
taneously, including basic code coverage, block weight, number of state transitions, execution time, and anomaly count
[15, 86]. In addition, nonfunctional properties such as memory usage [34] and control instability of robotic vehicles [36]
can also be used to direct fuzzing.

4.3.5 | Distribution of fitness metrics

Based on the introduction of fitness metrics in the previous subsections, we use Figure 6 to show the distribution of fit-
ness metrics among the tools we investigated. From Figure 6, we can see that the distance metric accounts for the most
(36%), followed by the fitness metric of path/sequence coverage, accounting for 21%. Notably, as new fitness metrics,
vulnerability prediction models (i.e. vulnerable probability) and customized fitness metrics (i.e., edge hit rate) are
important, accounting for 10% and 7%, respectively. Besides, the multi-dimensional fitness metric is also prevalent,
accounting for 12%. Thus, we can conclude that the distance metric is still the major fitness metric for DGF, but new
fitness metrics are growing fast.

F I GURE 6 Distribution of different fitness metrics among the tools we investigated.

WANG ET AL. 15 of 33

4.4 | Fuzzing optimization

Since a native fuzzer that uses randomly generated test inputs can hardly reach deep targets and is less effective at trig-
gering deep bugs along complex paths, various program analysis techniques, such as static analysis, control-flow analy-
sis, data-flow analysis, machine learning, semantic analysis, and symbolic execution, have been adopted to enhance the
directedness of reaching corner cases and flaky bugs. Figure 7 shows the statistics of mainstream optimization tech-
niques used in DGF.

Among the tools investigated, 71% of them relied on the control-flow analysis to evaluate seeds and determine the
reachability to the targets; 60% of them leverage static analysis to automatically identify targets [100] and extract infor-
mation from the PUT [82, 85]; 21% use data-flow analysis (mainly taint analysis) to identify the relationship between
the input and the critical program variables [23, 98, 108] or to optimize mutator scheduling [35]; 12% use machine learn-
ing to predict vulnerable code [30] and filter out unreachable inputs [91]; 12% integrate symbolic (concolic) execution to
solve complex path constraints [23, 28, 87, 100]; and finally, 14% adopt semantic analysis to identify vulnerable targets
automatically [22, 28, 84] and learn input fields semantics to optimize mutation. The next section will discuss the key
steps of greybox fuzzing and how they are optimized for directedness.

4.4.1 | Input optimization

A good seed input can drive the fuzzing process closer to the target location and improve the performance of the later
mutation process. According to Zong et al., on average, over 91.7% of the inputs of AFLGo cannot reach buggy
code [91]. There are thus many opportunities to increase the ability of DGF by enhancing the input generation.
Dynamic taint analysis [98] and semantic information [22] can assist in generating valid input that matches the input
format [89, 108]. These techniques also increase the probability of hitting vulnerable functions [22] or security-sensitive
program sites, such as maximizing the likelihood of triggering memory corruption bugs [98]. Except that, Fuzz-
Guard [91] utilizes a deep-learning-based approach to predict and filter out unreachable inputs before exercising them,
which saves time that can then be spent on real execution. BEACON [92] prunes infeasible paths (i.e. paths that cannot
reach the target code at runtime) with a lightweight static analysis, which can reject over 80% of the paths executed dur-
ing fuzzing.

4.4.2 | Seed prioritization

The core of DGF is the prioritization of seeds (for mutation) that are closest to the targets. DGF implementation is
effectively the act of closest seed-target relation prioritization. No matter what kind of fitness metric it adopts, seed pri-
oritization is mainly realized based on control-flow analysis. Distance-based approaches [21, 23, 24, 33, 82, 88, 89]

F I GURE 7 Statistics of mainstream optimization techniques used in directed greybox fuzzing (DGF).

16 of 33 WANG ET AL.

calculate the distance to the target basic blocks from the number of edges in the call and control-flow graphs of the
PUT. Similarity-based approaches [24, 27, 35, 83, 87] take the seed’s ability to cover the target edges on the control-
flow graph as a metric to evaluate the seed. Prediction model-based approaches [30, 31] also rely on the attributed
control-flow graph (i.e. using a numerical vector to describe the basic block in a control-flow graph, where each dimen-
sion of the vector denotes the value of a specific attribute of the basic block) to represent a binary program and extract
features for deep learning. A further point to note is that directed hybrid fuzzing [23, 28, 87, 96, 100] combines the pre-
cision of DSE and the scalability of DGF to mitigate their individual weaknesses. DGF can prioritize and schedule
input mutation to get closer to the targets rapidly, while DSE can reach more in-depth code by solving complex path
constraints.

4.4.3 | Power scheduling

After being selected, the seeds nearest to their targets are subjected to greater fuzzing opportunities by assigning more
power; that is, more inputs are produced by mutating them. Whereas AFL uses execution trace characteristics such as
trace size, PUT execution speed, and order in the fuzzing queue for power scheduling, most directed greybox fuzzers
use simulated annealing to allocate energy. Unlike traditional random walk scheduling, which always accepts better
solutions and may be trapped in a local optimum, simulated annealing accepts a solution that is worse than the current
one with a certain probability, so it is possible to jump out of local optima and reach the globally optimal solution [83].

To illustrate simulated annealing-based power scheduling in a straight way, we employed AFLGo to test libxml2
and collected the simulated annealing algorithm factor (APS Factor) of seeds with normalized distances of 0.1 and 0.9.
As shown in Figure 8, the x-axis represents the fuzzing time ranging from 0 to 24 hours, and the y-axis denotes the vari-
ations of the APS Factor. Meanwhile, we set the time threshold for simulated annealing in AFLGo to 12 hours, marked
by a red dotted line. Additionally, we adopted an exponential growth mode for energy over time (i.e. exp mode in
AFLGo). Figure 8a illustrates the increasing trend of the APS Factor with a normalized distance of 0.1 over time. As
fuzzing progresses, the APS Factor with a normalized distance of 0.1 exhibits exponential growth and eventually con-
verges to 16. On the other hand, Figure 8b demonstrates the decreasing trend of the APS Factor with a normalized dis-
tance of 0.9 over time. With continuous fuzzing, the APS Factor with a normalized distance of 0.9 shows exponential
decay and eventually converges to 1/16.

AFLGo [21] was the first to use a simulated annealing-based power schedule to gradually assign more energy to
seeds that are closer to the target locations while reducing energy for distant seeds. Hawkeye [82] added prioritization
to simulated annealing to allow seeds that are closer to the target to mutate first. AFLChurn [26] proposes a byte-level
power scheduling based on ant colony optimization which assigns more energy to bytes that generate more “interesting”
inputs. LOLLY [83] and Berry [83] optimized simulated annealing-based power schedules with a temperature threshold
to coordinate the cooling schedule in both the exploration and exploitation stages. In the exploration stage, the cooling
schedule randomly mutates the provided seeds to generate many new inputs, while in the exploitation stage, it generates
more new inputs from seeds that have higher sequence coverage, which is similar to the traditional gradient descent
algorithm [83]. In addition to simulated annealing, GREYHOUND [15] also adopts a custom generational particle
swarm algorithm, which is better suited for the nonlinear and stochastic behavior of the protocol model.

F I GURE 8 (a, b) Illustration of the simulated-annealing-based power scheduling.

WANG ET AL. 17 of 33

4.4.4 | Mutator scheduling

Optimizing mutator scheduling is another viable way of bettering directed fuzzing. Reasonable scheduling of mutators
can enhance the directedness of inputs by improving the precision and speed of seed mutation. A viable approach is to
first classify mutators into different granularities, such as coarse-grained and fine-grained [22, 30, 82, 84], and then
dynamically adjust them according to the actual fuzzing states. Coarse-grained mutators are used to change bulk bytes
during mutations to move the execution towards the “vulnerable functions”, while fine-grained only involve a few byte-
level modifications, insertions, or deletions, so as to monitor the “critical variables” [22]. The fuzzer gives a lower
chance of coarse-grained mutation when a seed can reach the target function. Once the seed reaches targets, the time
for fine-grained mutations increases as coarse-grained mutations decrease. In practice, the scheduling of mutators is
controlled by empirical values [30, 82]. Situ et al. [84] give two empirical observations—that (1) coarse-grained mutators
outperform fine-grained mutators on path growth and (2) the use of multiple mutations offers improved performance
compared to each individual mutation.

4.4.5 | Mutation operations

Data-flow analysis, such as taint analysis, can reflect the effect of the mutation in the generated inputs; thus, it is helpful
to optimize both mutation operations and input generation. RDFuzz [88] leverages a disturb-and-check method to
identify and protect “distance-sensitive content” from the input, that is, the critical content to maintain the distance
between the input and the target, and once altered, the distance becomes larger. Protecting such content during muta-
tion can help to approach the target code location more efficiently. UAFL [35] adopts information flow analysis to
identify the relationship between the input and the program variables in the conditional statement. It regards input
bytes that are more likely to change the values of the target statement with higher “information flow strength” and
assigns higher mutation possibility for them. The higher the information flow strength, the stronger this byte influences
the values of the variables. SemFuzz [22] tracks the kernel function parameters that the critical variables depend on via
backward data-flow analysis. TIFF [98] infers input type by type-based mutation to increase the probability of trigger-
ing memory corruption vulnerabilities. It leverages in-memory data-structure identification to identify the types of each
memory address used by the application and uses dynamic taint analysis to map what input bytes end up in what mem-
ory locations. Nevertheless, data-flow analysis usually enlarges the run-time overhead.

4.5 | Base tools

Based on the statistics in Table 1, we use Figure 9 to show the distribution of the base tools. As Figure 9 shows, 62%
(20/42) of the DGF tools are built on AFL, which is similar to the situation of CGF. As AFL is a well-structured
framework with good performance, it is suitable for further development, including DGF research. Most DGF tools

F I GURE 9 Distribution of the base tools.

18 of 33 WANG ET AL.

with customized fitness metrics would adopt AFL as the base tool. The second most used (6/42) base tool is AFLGo.
Since AFLGo is the first DGF tool based on the basic block distance, it is suitable for tools with distance-based fitness
metrics. In addition, some base tools are adopted owing to the test requirement. For example, Syzkaller is used as the
base tool for DGF in the kernel, VUzzer is used as the base tool for DGF at the binary level, and HARVEY is used as
the base tool for testing Ethereum smart contracts.

There are also tools built without a based tool, such as TOFU and RVFuzzer. For TOFU, though it uses a
distance-based fitness metric, the author did not mention any base tools in their paper but stated that “the high-level
structure of TOFU is similar to that of AFL”. Since TOFU is not open-sourced, we can only infer that TOFU is self-
devised. The reason may be that it relies on the compile tool WLLVM to extract ICFG, and WLLVM is incompatible
with the commonly used base tools. As for the RVFuzzer, since it is used to test robotic vehicles, most of the existing
base tools, such as AFL and AFLGo, cannot be used directly due to the source code requirement and environmental
requirements. In such a situation, the author would develop a customized tool, which is more usable, more lightweight,
and more efficient for the target system.

The main advantage of using base tools is the convenience of implementing tools. The already widely used base tool
can provide a reliable platform to build new tools. For example, when developing a distance-based DGF tool based on
AFL, we only need to modify a few modules (e.g. the fitness metric) in the framework, which is very time-saving. How-
ever, the major disadvantage lies in the compatibility. When the testing target has restrictions, such as only having
binary code or has different running environment, the commonly used base tools are not suitable or less efficient. A
self-devised customized tool is needed, which is more usable, more lightweight, and more efficient for the target envi-
ronment. For example, RVFuzzer for testing robotic vehicles.

5 | CHALLENGES FACED BY DGF

5.1 | Performance deduction

To realize directedness in fuzzing, most researchers use additional instrumentation and data analysis, for example, static
analysis, symbolic execution, taint analysis, and machine learning. However, such additional analysis inevitably incurs
performance deduction. The analysis cost is one of the biggest drawbacks of almost all the directed fuzzing techniques.
To evaluate the performance of directed greybox fuzzers, researchers usually focus on the ability to reach targets or
expose bugs, using metrics such as Time-to-Reach (the length of the fuzzing campaign until the first testcase that reaches
a given location) or Time-to-Exposure (the length of the fuzzing campaign until the first testcase that exposes a given
error [21]) to measure the performance of directed greybox fuzzers, while ignoring the measurement of performance
overhead. However, for a given fuzzing time budget, higher efficiency means more fuzzing executions and consequently,
more chance to reach the target. Thus, optimizing efficiency is a major challenge to improve directedness. Based on our
investigation, we summarize the following solution to improve DGF efficiency.

- Move the heavy execution-independent computation from run-time to compile-time. For example, AFLGo measures
the distance between each basic block and a target location by parsing the call graph and intra-procedural control
flow graph of the PUT. Since both parsing graphs and calculating distances are very time-consuming, AFLGo moves
most of the graph parsing and distance calculation to the instrumentation phase at compile-time in exchange for effi-
ciency at run-time. Such compile-time overhead can be saved when a PUT is tested repeatedly.

- Filter out the unreachable inputs to the target before execution. For example, FuzzGuard [91] utilizes a deep-
learning-based approach and BEACON [92] uses a lightweight static analysis to find infeasible paths to the targets in
advance, which can save over 80% of the path execution during fuzzing;

- Use more light-weight algorithms. For example, AFLChurn [26] leverages lightweight ant colony optimization instead
of expensive taint analysis to find “interesting bytes” and realize a byte-level power scheduling;

- Leverage parallel computing. For example, HDR-Fuzz [101] uses another core to run AddressSanitizer in parallel and
provides guidance to the directedness. Large-scale parallel fuzzing [109, 110] can also be adopted to improve effi-
ciency further.

However, these approaches might be less effective for certain situations. For example, for the continuously evolving
software, moving analysis from run-time to compile-time may not get obvious benefit as it will have to be rerun after
every single code change during compile time. Filtering out unreachable inputs and pruning infeasible paths inevitably
introduce false reports, making unreachable inputs and infeasible paths remain and such computational-complex paths
and inputs would influence the performance.

WANG ET AL. 19 of 33

In recent years, two state-of-the-art techniques, namely, BEACON [92] and SelectFuzz [111], have significantly
improved the speed of bug exposure by reducing the cost of fuzzing. BEACON leverages symbolic execution to analyze
the feasibility of different paths and eliminates those that cannot lead to the target, thereby reducing the overall fuzzing
cost. In a similar vein, SelectFuzz conducts a preliminary analysis of the reachability of basic blocks and selectively
instruments and calculates seed distances for blocks that are reachable. As a result, the overhead associated with instru-
mentation and seed distance calculation is minimized. By this means, SelectFuzz [111] avoids exploring irrelevant code,
further reducing the cost of fuzzing. By adopting these strategies, both BEACON [92] and SelectFuzz [111] effectively
decrease the fuzzing cost by minimizing the exploration of code that does not contribute to reaching the desired targets,
thereby enhancing the speed of bug exposure. In contrast, other techniques such as Windranger [97], CAFL [93], and
FuzzGuard [91] actually increase the cost of fuzzing due to their requirements for analyzing and collecting DBBs and
path constraints, or collecting and filtering seeds. However, in our evaluation, we found that the additional fuzzing cost
incurred by these techniques does not have a significant impact on the overall fuzzing throughput. Furthermore, the fit-
ness metrics and fuzzing strategies proposed by these techniques can effectively guide DGF to reach targets faster. Con-
sidering the improved speed of bug exposure achieved by these fitness metrics, the additional cost of fuzzing is deemed
acceptable. This has achieved a tradeoff between fuzzing cost and bug exposure.

5.2 | Equal-weighted metrics bias seed prioritization

In most of the state-of-the-art directed greybox fuzzers, the seed prioritization is based on equal-weighted metrics, that
is, treat each branch jump in the control-flow graph as having equal probability. We take the widely used distance-
based metric as an example, where the distance is represented by a number of edges, namely, the transitions among
basic blocks. However, such measurement ignores the fact that different branch jumps have different probabilities to
take, and thus, biases the performance of directed fuzzing.

Figure 10 shows a control-flow graph fragment of a simple example to illustrate the problem. Suppose input x is an
integer ranging from 0 to 9. Obviously, the probability of jumping from node A to node C is 0.1, and from node A to
node B is 0.9. We can also compute the probabilities of other jumps by the branch conditions. When using a distance-
based metric, the distance of A ! C is shorter than that of A ! G because A ! C has only one jump but A ! G has
three jumps. However, when taking the jump probability into account, the probability of A ! C is 0.1, while the proba-
bility of A ! G is 0.9 � 0.7 � 0.5 ≈ 0.3, which is more likely to be taken than A ! C and should be considered as
“shorter”. Thus, it is reasonable to also consider the weight difference when designing the fitness metric. Though this is
a hypothetical example, such a problem is realistic and frequent in the real-world program. One common case is when
A ! C represents an execution path through the error-handling code. The error-handling code is usually short and sim-
ple, and is used to retrieve resources, such as freeing the allocated memory. Thus, the execution path through the error-
handling code to the target is usually short in distance (e.g. one jump). However, since error-handling code is rarely
executed, such an execution path has a low probability. If we only consider distance, the path through the error-
handling code would be overemphasized, and we would ignore the bug-prone regular code, leading to a bias.

F I GURE 1 0 Equal-weighted metric incurs bias in distance-based seed prioritization.

20 of 33 WANG ET AL.

One solution is taking branch jump probability into account to construct weighted fitness metrics. In that case, each
seed is prioritized by the probability of converting the current execution path to a target path that goes through the tar-
get. Since an execution path can be viewed as a Markov chain of successive branches [44], the path probability can be
calculated by gathering the probabilities of all the branches within the path. Then the branch probability can be statisti-
cally estimated by calculating the ratio based on the Monte Carlo method [27]. By its very nature, the randomness and
high throughput of the fuzzing process fulfill the requirements for random and large sampling with the Monte Carlo
method. Thus, the distribution density can formally estimate the branch jump probability in a lightweight fashion.

One possible drawback of evaluating the reachability of the target based on probability is the potential run-time
overhead. Both the statistical jump counting and the probability calculation introduce extra computation. One way to
alleviate performance deduction is interval sampling. Compressing the volume of jump statistics by appropriate sam-
pling can accelerate the probability calculation and alleviate the space requirement for storage. Another way is to accel-
erate how the meta-data of jump statistics is stored and accessed. On the one hand, the probability-based approach
updates the jump statistics very often, and the reachability judgment also requires quick edge tracing. On the other
hand, since a jump usually has only two branches, the data distribution (e.g. based on a matrix) would be relatively
sparse, which dramatically increases space consumption. Thus, a customized data structure that balances the time and
space complexities is required.

5.3 | The global optimum discrepancy in the distance-based metric

When measuring multiple targets with a distance-based metric, one strategy is to seek the global shortest distance
between the execution path and all the targets using Dijkstra’s algorithm [21, 82, 85, 88, 89]. However, such global opti-
mum might miss local optimal seeds that are closest to a specific target, leading to a discrepancy. In order to elucidate
this case, an example is depicted in Figure 11. In this control-flow graph fragment, nodes K and O are the target nodes.
For the three seeds under test, one exercises path A!B!D!G!K, one exercises path A!C!E! I!M!N!O,
and the last exercises path A!C!E!H!L. Based on the distance formula defined by Böhme et al. [21], the har-
monic distances were calculated between each node in the three paths to the two targets—these are labeled in the figure.
The global distances for each of the three seeds are dABDGK ¼ð4=3þ3þ2þ1þ0Þ=5≈ 1:47, dACEIMNO ¼ð4=3þ3=4þ
2þ3þ2þ1þ0Þ=7≈ 1:44 and dACEHL ¼ð4=3þ3=4þ2þ1Þ=4≈ 1:27. Since dACEHL is the smallest of the three, one
should prioritize the seed for path A!C!E!H!L. However, this is unreasonable because path

F I GURE 1 1 Discrepancy introduced by distance-based seed prioritization metric.

WANG ET AL. 21 of 33

A!B!D!G!K goes through target node K, while path A!C!E! I!M!N!O goes through target O, but
path A!C!E!H!L does not reach any targets. Intuitively, as path A!C!E!H!L is far from the targets, it
should not be prioritized. The efficacy of directed fuzzing is affected when there is more than a single target, as finding
the global shortest distance has a discrepancy.

The reason behind such discrepancy is that the distance-based seed measurement only focuses on the shortest path.
When there are multiple paths reaching the same target, the longer ones might be ignored, causing a discrepancy in the
result. In Figure 11, if the paths A!C!K and A!C!E!H!O are considered, then
dACK ¼ð4=3þ3=4þ0Þ=3≈ 0:69, dACEHO ¼ð4=3þ3=4þ2þ1þ0Þ=5≈ 1:02. As expected, dACK < dACEHO < dACEIMNO.
This is because path A!C!K and path A!C!E!H!O are the shortest paths from A to targets K and O, respec-
tively. The shortest path is always prioritized. Such discrepancy is realistic and frequently occurs when three conditions
are all met: (1) multiple targets are measured by distance, (2) at least one target has more than one viable path and (3) a
seed exercises the longer path and is measured by this distance. Multi-target testing is a frequently used scenario when
applying DGF. For example, testing patches by setting code changes as targets. Thus, condition (1) is easy to meet. For
condition (2), we also use the error handling code as an example. The error-handling code can be the destination of
many functional modules, which means a target in the error-handling code is usually reachable via many paths; thus,
condition (2) is also easy to meet. Finally, the satisfaction of condition (3) is uncertain as we cannot guarantee that the
longer path is exercised. Only when a seed exercises the longer path, it would be measured by this distance, and a dis-
crepancy occurs.

To avoid such discrepancy, all potential paths to the targets must be accounted for. For example, under a different
context, the distances from the calling function to the immediately called function may not be exactly the same. To
solve this problem, Hawkeye uses “adjacent-function distance augmentation” based on a lightweight static analysis [82],
which considers the patterns of the (immediate) call relation based on the generated call graph to augment the distance
that is defined by immediate calling relation between caller and callee. Another strategy for coordinating multi-targets
is separating the targets. For each seed, only the minimum distance for all targets is selected as the seed distance, and
the seeds are prioritized based on this min-distance [23]. The effect of this is to negate the possibility of biassing into
global optimal solutions but at the cost of increasing the time required to hit a given target.

5.4 | Inflexible coordination of the exploration phase and exploitation phase

Another challenge of DGF lies in coordinating the exploration-exploitation trade-off. On the one hand, more explora-
tion is necessary to provide adequate information for exploitation; on the other hand, an overfull exploration would
consume many resources and delay the exploitation. It is difficult to determine the boundary between the exploration
phase and the exploitation phase to achieve the best performance.

Most directed greybox fuzzers, such as AFLGo, adopt a fixed splitting of the exploration phase and the exploitation
phase. The time budgets are preset in the test configuration before testing. Such a scheme is preliminary because the
separation point is inflexible and relies on the human experience. Since each PUT is different, such fixed splitting is less
adaptive. Once the exploration phase gives way to the exploitation phase, there is no going back even if the direction
performance is poor due to insufficient paths.

The efficacy of DGF is determined by how the resources for exploration and exploitation are divided. To elucidate
this with a case study, AFLGo was applied to libxml using the “-z” parameter of AFLGo to set different time budgets
for the exploration phase and compare the performance. As Figure 12 shows, the horizontal coordinate shows the time
duration of the test and the vertical coordinate means the minimum distance of all the generated inputs to the target

F I GURE 1 2 Comparison of different splittings of the exploration phase and the exploitation phase.

22 of 33 WANG ET AL.

code areas (min-distance). A small “min-distance” indicates a better-directed performance. The experiments last for
24 hours, and AFLGo-1 means 1 hour of exploration with 23 hours of exploitation, and the rest are similar. From the
results, it can be concluded that the splitting of the exploration and exploitation phases affects the performance of
DGF and that the best performance (AFLGo-16) requires adequate time for both of the two phases. However, it is dif-
ficult to get optimum splitting.

Among the directed fuzzers investigated, only one work tries to optimize the coordination of exploration–exploita-
tion. RDFuzz [88] combines distance and frequency to evaluate the inputs. Low-frequency inputs are required in the
exploration phase to improve the coverage, while short-distance inputs are favored in the exploitation phase to achieve
the target code areas. Finally, an intertwined testing schedule is used to conduct the exploration and exploitation alter-
nately. However, the classification of the four input types (short/long distance and low/high frequency) is preliminary,
and the performance heavily depends on the empirical threshold values.

5.5 | Dependence on the PUT source code

Most of the known DGF works [21, 82, 88] are implemented on top of AFL and inherit AFL’s compile-time instrumen-
tation scheme to feedback execution status or calculate distance-based metrics. A significant drawback of such a scheme
is the dependence on the PUT source code. Thus, it is unsuitable for testing scenarios where the source code is unavail-
able, such as commercial off-the-shelf (COTS) software or security-critical programs that rely partly on third-party
libraries.

There are multiple reasons that hinder the application of DGF at the binary level. First, heavy run-time overhead. A
straightforward solution to binary-level testing is through a full-system emulator, such as QEMU [24]. However,
emulator-based tools are usually less efficient. For example, the execution speed of vanilla AFL is 2-5 times faster than
its QEMU mode [112]. Second, difficulty in collecting target information. An open-source PUT can be used to obtain
target information from various channels, such as the CVE vulnerability descriptions [27, 28], changes made in the git
commit logs [22], and human experience on critical sites in the source code. However, for binary code, we can only
extract target information from bug traces [24]. Third, difficulty in labeling the targets. For the source code instrumenta-
tion approach, the targets can be labeled based on the source code (e.g. cxxfilt.c, line 100). However, it is much more
difficult for the binary. Since the binary code is hard to read, it must be disassembled using tools such as IDA Pro [24],
and the targets labeled with virtual addresses, which is both inconvenient and time-consuming.

A viable solution to alleviate the performance limitation is hardware assistance, such as Intel Processor Trace (PT).
Intel PT is a lightweight hardware feature in Intel processors. It can trace program execution on the fly with negligible
overhead (averagely 4.3x faster than QEMU-AFL [113]), which replaces the need for dynamic instrumentation. Using
the packet trace captured by Intel PT along with the corresponding binary of the PUT, the execution path of the PUT
could be fully reconstructed. There have been attempts of fuzzing with PT [10, 112–114], but it has never been used to
DGF yet. For the problem of target identification and labeling at the binary code level, a machine-learning-based
approach [30, 31] and a heuristic binary diffing approach [100] can be leveraged to automatically identify the
vulnerable code.

6 | APPLICATION OF DGF

DGF has a good application prospect. When a practitioner chooses a directed greybox fuzzer, the first thing to consider
is the application scenario. We summarize the following typical scenario for the DGF application.Patch testing. DGF
can test whether a patch is complete and compatible. A patch is incomplete when a bug can be triggered by multiple
inputs [115], but the patch only fixes a part of them. For example, CVE-2017-15939 is caused by an incomplete fix for
CVE-2017-15023 [82]. Meanwhile, a patch can introduce new bugs [116]. For example, CVE-2016-5728 is introduced
by a careless code update. Thus, directed fuzzing towards problematic changes or patches has a higher chance of expos-
ing bugs. For example, DeltaFuzz [25] and AFLChurn [26] are designed for regression testing. SemFuzz [22] uses code
changes from git commit logs. UAFuzz [24] and 1dvul [23] use binary-level comparison to identify patch-related target
branches, which are particularly suitable for this scenario.
Bug reproduction. DGF can reproduce a known bug when the buggy input is unavailable. For example, due to concerns
such as privacy, some applications (e.g. video players) are not allowed to send the input file. With DGF, the in-house
test team can use DGF to reproduce the crash with the method calls in stack trace and some environmental parame-
ters [21]. DGF is also helpful when generating Proof-of-Concept (PoC) inputs of disclosed vulnerabilities with given
bug report information [22, 23]. In fact, DGF is in demand because 45.1% of the usual bug reports cannot be repro-
duced due to missing information and user privacy violations [117]. TortoiseFuzz [27] and DrillerGo [28] utilize CVE

WANG ET AL. 23 of 33

vulnerability descriptions as target information, while UAFuzz [24] extracts target information from bug traces, both of
which are suitable for this scenario.
Knowledge integration. DGF can boost program testing by integrating the knowledge from a human analyst. Human-
in-the-loop can help to overcome roadblocks and explore the program’s state space more thoroughly. For example,
IJON [29] uses human experience to identify the security-sensitive program sites (e.g. call site of malloc() and
strcpy()) to guide fuzzing towards error-prone parts [29], which are suitable for this scenario.
Result validation. DGF can validate the result of other software testing approaches. Testing approaches such as static
analysis and machine learning can help to identify potentially vulnerable targets, though the results are inaccurate.
DGF can be used to refine the results by removing false positives. Tools like V-Fuzz [30], SUZZER [31], DeFuzz [32]
and ParmeSan [33] are suitable for this scenario.
Energy saving. Another interesting application of DGF is when the testing resource is limited. For example, IoT devices
fuzzing. Under this circumstance, identifying critical code areas to guide testing is more efficient than testing the whole
program in an undirected manner, which can save time and computational resources being spent on nonbuggy code
regions. GREYHOUND [15] and RVFUZZER [36] are designed for Wi-Fi clients and robotic vehicles respectively,
and are both suitable for this scenario.
Non-crash bug detection. Finally, DGF can detect non-crash bugs based on customized indicators. For example, it can
find uncontrolled memory consumption bugs under the guidance of memory usage [34] and find algorithmic complexity
vulnerabilities under the guidance of resource usage [38, 102].

The second thing to consider is the test conditions. Of these, the source code availability is of vital importance. In
order to realize directed fuzzing, researchers use additional instrumentation and data analysis in the fuzzing process.
Taking AFLGo as an example, when instrumenting the source code at compile-time, the control-flow graphs and call
graphs are constructed via LLVM’s link-time-optimization pass. After this, AFLGo measures the distance between
each basic block and a target location by parsing the call graph and intra-procedural control-flow graph of the PUT.
For the tools reviewed herein, 81% rely on the PUT source code.

Since both parsing graphs and calculating distances are very time-consuming, preprocessing is required. AFLGo
moves most of the program analysis to the instrumentation phase at compile-time in exchange for efficiency at run-
time. Notwithstanding this, AFLGo still spent nearly 2 hours compiling and instrumenting cxxfilt (Binutils) [24],
which is a non-negligible time cost. For cases where the source code is unavailable, there are three challenges to
consider—the heavy run-time overhead caused by QEMU [24], the difficulty in collecting target information, and the
difficulty in labeling targets, all of which result in inconvenience and reduced efficiency (this is discussed in detail in
Section 5.5).

Last but not least, the number of targets and the number of testing objectives also affect the choice of a tool. When
there are multiple targets, the relationship among targets is also exploitable. For example, UAFL [35] takes into
account the operation ordering of target sequences to find complex behavioral use-after-free vulnerabilities (will discuss
in Section 9.1). Most of the tools investigated tend to only focus on optimizing a single objective, such as covering spe-
cific targets. A multi-objective optimization is a practical option that meets the demand of optimizing more than one
fitness metric simultaneously. For example, Memlock [34] generates test sets that maximize memory usage and code
coverage at the same time (will be discussed in detail in Section 9.3).

7 | THREATS TO VALIDITY

First, our search method in this survey mainly focuses on the top venue works, which might miss some works that are
related to DGF but not published in top venues. Second, since this survey was finished by 2022.5, it only collected
papers published from 2017.1 to 2022.5; thus, it might miss some new works that were published after 2022.5. These
new works might bring new techniques that can address the challenges proposed in this paper. Nevertheless, this paper
can still reflect the main research progress and future trends.

8 | RELATED WORKS

Fuzzing surveys. So far there have been several surveys on fuzzing. As far as we can find, Fell [118] conducted the first
review on fuzzing in 2017, which introduced the basic scheme of fuzzing and the existing tools on protocols fuzzing and
web browser fuzzing. Li et al. presented an overview of fuzzing solutions by the year 2017 and discussed techniques that
could make the fuzzing process smarter and more efficient, including static analysis, taint analysis, machine learning,
and format methods. Liang et al. [6] summarized 18 typical fuzzers ranging from 2004 to 2017. They discussed the key
obstacles and some state-of-the-art technologies that aim to overcome or mitigate these obstacles. In 2019, Manès

24 of 33 WANG ET AL.

et al. [2] gave a detailed survey on 63 modern fuzzers. They explored the design decisions at every stage of fuzzing by
surveying the related literature. Böhme et al. [119] summarized the open challenges and opportunities for fuzzing and
symbolic execution as they emerged in discussions among researchers and practitioners in a Shonan Meeting. Finally,
Zhu et al. [119] gave the most up-to-date survey on fuzzing to narrow down the gaps between the entire input space and
the defect space. The survey reviews and analyses the gaps as well as their solutions, considering both breadth and
depth. In addition to surveys on common fuzzing, there are also surveys focused on subclasses of fuzzing. Eisele et al.
reviewed the fuzzing approaches for embedded systems [120]. They gave a formal definition of embedded fuzzing and
grouped the approaches according to how the execution environment is served to the system under test. Saavedra
et al. [121] reviewed the machine learning applications in fuzzing, including deep learning, neural networks, and rein-
forcement learning. They discussed successful applications of machine learning to fuzzing, such as input generation,
seed selection, and corpus minimization. Wang et al. also gave a review of fuzzing based on machine learning tech-
niques [122]. They identified six different stages in which machine learning has been used and studied the machine
learning-based fuzzing models from the selection of machine learning algorithm, preprocessing methods, datasets, eval-
uation metrics, and hyperparameters setting. They also assessed the performance of the machine learning models based
on the frequently used evaluation metrics. Zhang et al. also gave a preliminary survey on directed fuzzy technol-
ogy [123]. However, this survey only gave a brief introduction and lacked a detailed comparison of different
approaches.
Generational fuzzing. Generating syntactically and semantically valid inputs can improve the efficiency of fuzzers in
code coverage and bug detection [124]. To achieve this goal, researchers have proposed generation-based fuzzing, which
utilizes grammar or models to describe the input structure and generate syntactically correct inputs [124–128]. This
approach has been widely employed in fuzzing targets that require highly structured inputs, such as parsers, protocols,
and compilers [124, 125, 127–130]. Utilizing a well-defined grammar or model can significantly enhance the fuzzer.
However, creating a manual grammar requires substantial effort [131–133]. To alleviate this burden, some researchers
have explored learning the grammar from existing test cases using machine learning techniques [134–136]. Nevertheless,
as pointed out in BeDivFuzz [124], having only syntactically correct inputs may not be sufficient to explore deeper
regions of programs. Recent studies have combined mutation-based fuzzing with generation-based fuzzing and incorpo-
rated coverage mechanisms in greybox fuzzing to improve the efficiency of fuzzers. Zest [126] integrates coverage feed-
back to generate inputs with high semantic coverage. BeDivFuzz [124] follows a similar mechanism but extends it with
structural mutation strategies. DGF can also be enhanced by incorporating generation-based techniques to generate
highly structured test cases that satisfy more constraints and reach the intended targets.
Anti-fuzzing. Whitehouse et al. [137] introduced the concept of anti-fuzzing and proposed strategies such as fake crashes
and performance degradation. David et al. [138] identified four attack vectors against fuzzers, including execution
speed, crash masking, fuzzer detection, and feedback mechanism detection. FUZZIFICATION [139] and ANTI-
FUZZ [140] subsequently proposed countermeasures for degrading fuzzers. For example, they injected a large number
of fake bugs into the target application to attack the feedback mechanism in CGF, transformed explicit data flows into
implicit data flows for anti-hybrid fuzzing, and inserted delay codes in cold paths to slow down the fuzzer. Some of
these countermeasures are also employed by VALL-NUT [141]. However, certain strategies, such as executing delay
codes, are only applied when the inputs trigger paths that regular users rarely reach but fuzzers are prone to fall into. In

F I GURE 1 3 Correlations among different targets.

WANG ET AL. 25 of 33

the case of DGF, since the scheduling process of target-DGF is guided by predefined targets, a target that is not present
in those paths may result in the fuzzer generating fewer test cases that cover the cold paths. As for behaviour-DGF,
such as memlock, memory consumption is the fitness metric, which is barely affected by anti-fuzzing techniques. This
may mitigate the effectiveness of these path-based strategies in antifuzzing, and these passive antifuzzing strategies may
have a lesser impact on DGF compared with CGF. Nevertheless, No-Fuzz [142] proposed strategies for accurately
detecting binary-only instrumentations used by fuzzers, such as timing-related techniques and execution frequency
examination. Once fuzzers are detected, mitigation techniques are implemented. Jiang et al. [143] utilized inconsistent
instructions to detect the emulation technique used in binary-only fuzzing. These techniques have been proven to have
strong detection capabilities for fuzzers and antifuzzing, including DGF.
Fuzzing cost. BEACON [92] leverages symbolic execution to analyze the feasibility of different paths and eliminates
those that cannot lead to the target, thereby reducing the overall fuzzing cost. In a similar vein, SelectFuzz [111] con-
ducts a preliminary analysis of the reachability of basic blocks and selectively instruments and calculates seed distances
for blocks that are reachable. As a result, the overhead associated with instrumentation and seed distance calculation is
minimized. In contrast, other techniques such as Windranger, CAFL, and FuzzGuard actually increase the cost of fuzz-
ing due to their requirements for analyzing and collecting DBBs and path constraints or collecting and filtering seeds.
However, since the fitness metrics and fuzzing strategies proposed by these techniques can effectively guide DGF to
reach targets faster, considering the improved speed of bug exposure achieved by these fitness metrics, the additional
cost of fuzzing is deemed acceptable, which can still achieve a tradeoff between fuzzing cost and bug exposure.

9 | CONCLUSION AND PERSPECTIVES ON FUTURE TRENDS

DGF is a practical and scalable approach to software testing, which can be applied to specific scenarios, such as patch
testing, bug reproduction, and special bug detection. Modern DGF has evolved from reaching target locations to
detecting complex deep behavioral bugs. This paper conducts the first in-depth study of DGF based on the review of
42 state-of-the-art tools related to DGF. After summarizing the recent progress in DGF and the challenges faced by
DGF, we make the following suggestions in terms of the perspectives and future trends of DGF, aiming to facilitate
and boost research in this field.

9.1 | Exploitation of the relationship between targets

When there are multiple targets in a targeted fuzzing task, how to coordinate these targets is another challenge.
Although 86% (36/42) of the fuzzers we investigated support multi-targets, only four of them paid attention to the rela-
tionship among targets. For multiple targets to be reached, exploiting the relationship among targets is meaningful for
optimizing DGF. If the targets are unrelated, weights can be assigned to them to differentiate the importance or proba-
bility. Alternatively, the hidden relationship can be extracted and exploited to improve directedness. For example,
UAFL [35] takes into account the operation sequence ordering when leveraging target sequences to find use-after-free
vulnerabilities. This is because, to trigger such behavioral complex vulnerabilities, one needs not only to cover individ-
ual edges but also to traverse some longer sequences of edges in a particular order. Such a method can be extended to
detect semantic bugs, such as double-free and API misuse. Berry [87] enhanced the target sequences with execution con-
text (i.e. necessary nodes required to reach the nodes in the target sequences) for all paths. Similarly, KCFuzz [96]
regards the parent nodes in the path to the target as keypoints to cover. CAFL [93] regards the data conditions along
the path to the target as constraints and drives the seeds to satisfy the constraints in order to finally reach the target.

F I GURE 1 4 Multi-objective optimization performance on good seeds.

26 of 33 WANG ET AL.

Huang et al. proposed to exploit the correlations between different targets [144], primarily in the form of path condition
overlapping, conflicting, and independence, as illustrated in Figure 13. We use their running example in Listing 1 to show
the three correlations [144]. (1) Condition a > 5 is an overlapping condition for both targets 1 and 2 because reaching them
both requires the condition to hold. The overlapping condition can direct the fuzzer to cover the true branch at Line
5. (2) Reaching targets 1 and 2 have mutually exclusive demands on the condition of b, namely b ⩽ 1 and b >1, which we
refer to as a conflicting condition for the two targets. We regard the seeds satisfying b ⩽ 1 as more likely to cover target
1 and seeds satisfying b > 1 are more likely to cover target 2. The fuzzer can more accurately select seeds for multiple
targets by using conflict correlations to differentiate the difficulties in reaching different targets, for example, targets
1 and 2. (3) The condition d > 3 at Line 22 only influences the reachability of target 3 but does not affect whether tar-
gets 1 and 2 are reached. Similarly, condition a >5 affects reaching targets 1 and 2 but not target 3. As a result, we can
mutate the independent bytes simultaneously, which could help approach multiple targets with fewer executions.

Herein, we suggest that the following relationships can be considered for DGF research.
The spatial relationship. Namely, the relative position of targets on the execution tree. Consider the relation between
two targets, including whether they occupy the same branch, the level of shared executions, and their relative prece-
dence if any.
The state relationship. For targets that involve the program state, consider their position in the state space. For exam-
ple, whether two targets share the same state and whether two states can convert to each other on the state transition
map.
The interleaving relationship. For multithreaded programs, thread scheduling also affects the execution ordering of
events in different threads. Targets that can be reached under the same thread interleaving should have a close relation-
ship in the interleaving space.

9.2 | Design multi-dimensional fitness metric

Current fuzzing approaches mainly focus on the coverage at the path level, such as maximizing the overall path cov-
erage or reaching specific code parts, which neglects the fact that some bugs will not be triggered or manifest even

WANG ET AL. 27 of 33

when vulnerable code is exercised. For example, a buffer overflow vulnerability will be exhibited at a buffer access
location only when the buffer access pointer points outside the buffer. Similarly, an integer overflow vulnerability
will be observed at a program location only when the variable being incremented has a large enough value. To
detect such “hard-to-manifest” vulnerability, the fitness metric must be extended to be multi-dimensional, such as
the state space.

In practice, exploring a complex state machine is difficult, and most fuzzing-based approaches only make progress
when exercising certain code, neglecting the update of the state machine and not fuzzing the corresponding test input
further. However, some vulnerabilities may not be revealed for every visit to the program point. Only certain executions
that reach the vulnerability point with the right state may exhibit vulnerable behavior. To expose such vulnerability, we
need inputs that not only reach the vulnerability location but also match the vulnerable state [81].

headroom¼
0, if Ac⩾Ahþ s;

ðAhþ s�AcÞ=s, if Ah ⩽Ac <Ahþ s;

1, otherwise:

8>><
>>:

ð1Þ

In order to find hard-to-manifest vulnerability (e.g. buffer overflow and integer overflow), AFL-HR [81] defines a
fitness metric ranging from 0 to 1, called headroom, to indicate how closely a test input can expose a potential vulnera-
bility at a given vulnerability location. For example, for buffer overflow vulnerabilities, we consider the buffer access
location is vl, where ptr is the pointer, Ac is the value of ptr during the visit, Ah is the starting address of the allocated
buffer and s is the size of the allocated buffer. As Equation (1) shows, the headroom is defined as the minimum distance
between the location pointed to by the buffer access pointer and the end of the buffer across all visits to this location,
divided by the size of the buffer.

IJON [29] leverages an annotation mechanism that allows a human analyst to help overcome roadblocks and
explore the program’s state space more thoroughly. Thus, state space is a dimension that is worth taking into account
as a fitness metric alongside the reachability of the vulnerability location.

9.3 | Multi-objective optimization

For simplicity, the vast majority of contemporary studies have opted to ignore the possibility of multi-objective
targeting through the simultaneous application of a range of metrics. For example, a tester might be interested in
achieving higher coverage, while also targeting unusually long execution times, security properties, memory con-
sumption, or energy consumption. Multi-objective optimization provides an advantage over traditional policies that
are only capable of achieving one goal. It formulates the trade-off among multiple properties, such as usability
and security [145]. For example, multi-objective optimization can generate test sets that cover specific targets while
also maximizing overall coverage or prioritizing tests that cover as much of the software as possible while
minimizing the amount of time that tests take to run [59]. The result of a multi-objective search is a set of
Pareto-optimal solutions, where each member of the set is no better than any of the others for all of the
objectives [59].

Multi-objective optimization is an open problem in the SBST community [59], which also is a challenge for DGF. A
general solution for optimizing multiple objectives is co-evolution, where two (or more) populations of test inputs
evolve simultaneously in a cooperative manner using their own fitness functions For example, AFL-HR [81] defines the
fitness metric headroom to measure how closely a test input can expose a potential vulnerability at a given vulnerability
location. Then it uses a co-evolutionary computation model to evolve test inputs for both coverage-based and
headroom-based fitness metrics simultaneously. Similarly, other fitness metrics such as memory consumption [34] and
new maxima of execution counts [37] have also been applied in a co-evolutionary manner. In contrast, FuzzFactory [99]
provides a framework that supports multiple domain-specific objectives that are achieved by selecting and saving inter-
mediate inputs from a custom predicate, which avoids the nontrivial implementation of mutation and search heuristics.

To show how multi-objective optimization works. We use MobFuzz [48] as an example. MobFuzz models the
multi-objective optimization as the problem of selecting the best objective combination. The fuzzing process is divided
into t intervals that each lasts for one minute. In the initial phase, the fuzzer selects the objective combinations in order
and scores them by the rewards as Equation (2) defines [48].

28 of 33 WANG ET AL.

ScoreðCl, tÞ ¼RðCl , tÞþUðCl , tÞ

¼
Pt

k¼0RðCl,kÞ
t

þ γ ∗

ffi
ln

P
Cl � Cnl

� �

nl

vuut ð2Þ

In Equation (2), MobFuzz applies the UCB1 [146] algorithm to select the combinations with the highest scores. In
UCB1, ScoreðCl, tÞ denotes the final score for the combination to make decisions, which consists of two components:
RðCl, tÞ and UðCl, tÞ. C denotes all the objective combinations, and Cl denotes the lth combination. RðCl , tÞ is the aver-
age reward of Cl in previous t rounds, which gives combinations with greater historical rewards higher scores (exploita-
tion). RðCl,kÞ is the reward of Cl in the kth round. UðCl , tÞ is the upper confidence bound of Cl, and it adds greater
scores to combinations with smaller nl values (the number of times the combination is selected), which is exploration.
At the beginning of fuzzing, MobFuzz goes through an initial stage, in which each objective combination is selected
once. After this stage, the nl value of each combination will be 1. Next, at the end of each round of fuzzing, MobFuzz
calculates the score of each combination and chooses the one with the maximum score as the objective combination for
the next round. Moreover, γ is an empirical parameter in UCB1 that controls the balance between exploration and
exploitation.

Then, it adaptively selects the objective combination that contains the most appropriate objectives for the current
situation, the best objective combination with the highest reward is selected and given more power. Finally, an evolu-
tionary algorithm is designed for multi-objective optimization in MobFuzz. The basic process is as follows: First, an ini-
tial population of seeds with a scale of N is selected. Next, the offspring seeds are obtained with crossover and mutation
among the initial population. Then, execute the target program with each seed in the population and obtain related
information. From the second generation onwards, the parent population and the offspring are combined to perform
nondominated sorting. The seeds with updated objective values are selected to form a new parent population with a
scale of N. Finally, the new offspring seeds are generated by the crossover and mutation among the new parent popula-
tion. This process repeats until the predefined number of iterations is met.

To show the effectiveness of multi-objective optimization, we use metric good seeds to test MobFuzz and baseline
fuzzers on four programs. Seeds that achieve greater objective values than the average in the selected objective combi-
nation are defined as good seeds. In Figure 14, the x-axis is the test time, and the y-axis is the percentages of good seeds
generated. MobFuzz-N means MobFuzz disables multi-objective optimization. From the figure, we can conclude that
by multi-objective optimization, the percentages of good seeds in MobFuzz are significantly greater than those of the
baseline fuzzers.

9.4 | Target for new domains

Among the tools evaluated, only one (SemFuzz [22]) supports kernel code testing. Thus, introducing DGF to kernel
code and guiding fuzzing towards critical sites such as syscalls and error handling codes to find kernel bugs should be a
productive direction. Except for kernel testing, protocol testing is also suitable for DGF. Directed testing can
strengthen the critical fields of the protocol message, such as the message length and control information. Zhu
et al. [95] utilize DGF to construct more complete control flow graphs by targeting and exercising indirect jumps. It is
delightful to see that DGF has been applied in the targeted testing for Register Transfer Level (RTL) designs [94].
Hopefully, DGF will be applied to more domains in the future.

Although DGF has been trying to discover new bug types, such as use-after-free and memory consumption bugs,
many commonly seen bug types have not yet been included. Thus, another research direction is applying DGF to bug
types with specific features, such as information leakage, time-of-check to time-of-use [147], and double-fetch bugs
[116, 148]. For example, to detect a double-fetch bug, DGF would be useful to guide the testing towards code parts that
launch continuous kernel reads of the same user memory address.

ACKNOWLEDGEMENTS
The authors would like to sincerely thank all the reviewers for their time and expertise on this paper. Your insightful
comments help us improve this work. This work is partially supported by the National University of Defense Technol-
ogy Research Project (ZK20-17 and ZK20-09), the National Natural Science Foundation China (62272472,
U22B2005, and 61972412) and the HUNAN Province Natural Science Foundation (2021JJ40692).

CONFLICT OF INTEREST STATEMENT
The authors declare no potential conflict of interest.

WANG ET AL. 29 of 33

DATA AVAILABILITY STATEMENT
The authors confirm that the data supporting the findings of this study are available within the article.

ORCID
Pengfei Wang https://orcid.org/0000-0003-3408-4153

REFERENCES
1. Miller BP, Fredriksen L, So B. An empirical study of the reliability of unix utilities. Commun ACM. 1990;33(12):32–44.
2. Manès VJM, Han H, Han C, Cha SK, Egele M, Schwartz EJ, Woo M. The art, science, and engineering of fuzzing: a survey. IEEE Trans Softw

Eng. 2019;47(11):2312–31.
3. Godefroid P. Fuzzing: hack, art, and science. Commun ACM. 2020;63(2):70–6.
4. Boehme M, Cadar C, Roychoudhury A. Fuzzing: challenges and reflections. IEEE Softw. 2021;38(3):79–86.
5. Zhu X, Wen S, Camtepe S, Xiang Y. Fuzzing: a survey for roadmap. ACM Comput Surv (CSUR). 2022;54(11s):1–36.
6. Liang H, Pei X, Jia X, Shen W, Zhang J. Fuzzing: state of the art. IEEE Trans Reliab. 2018;67(3):1199–218.
7. Li J, Zhao B, Zhang C. Fuzzing: a survey. Cybersecurity. 2018;1(1):1–13.
8. Blair W, Mambretti A, Arshad S, Weissbacher M, Robertson W, Kirda E, Egele M. Hotfuzz: discovering algorithmic denial-of-service vulnera-

bilities through guided micro-fuzzing, 2020. arXiv preprint arXiv:2002.03416.
9. Joffe L, Clark D. Directing a search towards execution properties with a learned fitness function. In the 12th IEEE Conference on Software Test-

ing, Validation and Verification (ICST), 2019. p. 206–16.
10. Schumilo S, Aschermann C, Gawlik R, Schinzel S, Holz T. KAFL: hardware-assisted feedback fuzzing for os kernels. In 26th USENIX Security

Symposium (USENIX Security 17), 2017. p. 167–82.
11. Song D, Hetzelt F, Das D, Spensky C, Na Y, Volckaert S, et al. Periscope: an effective probing and fuzzing framework for the hardware-os

boundary. In NDSS, 2019.
12. Kim K, Jeong DR, Kim CH, Jang Y, Shin I, Lee B. HFL: hybrid fuzzing on the linux kernel.
13. Yu B, Wang P, Yue T, Tang Y. Poster: fuzzing IoT firmware via multi-stage message generation. In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security, 2019. p. 2525–7.
14. Zheng Y, Davanian A, Yin H, Song C, Zhu H, Sun L. FIRM-AFL: high-throughput greybox fuzzing of IoT firmware via augmented process

emulation. In 28th USENIX Security Symposium (USENIX Security 19), 2019. p. 1099–114.
15. Garbelini ME, Wang C, Chattopadhyay S. Greyhound: directed greybox wi-fi fuzzing. IEEE Trans Depend Sec Comput. 2020;19(2):817–34.
16. Shin Y, Williams L. Can traditional fault prediction models be used for vulnerability prediction? Empir Softw Eng. 2013;18(1):25–59.
17. Ganesh V, Leek T, Rinard M. Taint-based directed whitebox fuzzing. In 2009 IEEE 31st International Conference on Software Engineering,

2009. p. 474–84.
18. Ma K-K, Phang KY, Foster JS, Hicks M. Directed symbolic execution. In International Static Analysis Symposium, 2011. p. 95–111.
19. Person S, Yang G, Rungta N, Khurshid S. Directed incremental symbolic execution. Acm Sigplan Notices. 2011;46(6):504–15.
20. Marinescu PD, Cadar C. Katch: high-coverage testing of software patches. In Proceedings of the 2013 9th Joint Meeting on Foundations of Soft-

ware Engineering, 2013. p. 235–45.
21. Bohme M, Pham V-T, Nguyen M-D, Roychoudhury A. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, 2017. p. 2329–44.
22. You W, Zong P, Chen K, Wang X, Liao X, Bian P, Liang B. Semfuzz: semantics-based automatic generation of proof-of-concept exploits. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017. p. 2139–54.
23. Peng J, Li F, Liu B, Xu L, Liu B, Chen K, Huo W. 1dVul: discovering 1-day vulnerabilities through binary patches. In 2019 49th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2019. p. 605–16.
24. Nguyen M-D, Bardin S, Bonichon R, Groz R, Lemerre M. Binary-level directed fuzzing for use-after-free vulnerabilities, 2020. arXiv preprint

arXiv:2002.10751.
25. Zhang J-M, Cui Z-Q, Chen X, Wu H-H, Zheng L-W, Liu J-B. Deltafuzz: historical version information guided fuzz testing. J Comput Sci Tech-

nol. 2022;37:29–49.
26. Zhu X, Bohme M. Regression greybox fuzzing. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Secu-

rity, 2021. p. 2169–82.
27. Wang Y, Jia X, Liu Y, Zeng K, Bao T, Wu D, Su P. Not all coverage measurements are equal: fuzzing by coverage accounting for input prioriti-

zation. In NDSS, 2020.
28. Kim J, Yun J. Poster: directed hybrid fuzzing on binary code. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-

cations Security, 2019. p. 2637–9.
29. Aschermann C, Schumilo S, Abbasi A, Holz T. Ijon: exploring deep state spaces via fuzzing. In IEEE Symposium on Security and Privacy (SP),

2020.
30. Li Y, Ji S, Lv C, Chen Y, Chen J, Gu Q, Wu C. V-fuzz: vulnerability-oriented evolutionary fuzzing, 2019. arXiv preprint arXiv:1901.01142.
31. Zhao Y, Li Y, Yang T, Xie H. Suzzer: a vulnerability-guided fuzzer based on deep learning. In International Conference on Information Security

and Cryptology, 2019. p. 134–53.
32. Zhu X, Liu S, Li X, Wen S, Zhang J, Seyit C, Xiang Y. Defuzz: deep learning guided directed fuzzing, 2020. arXiv preprint arXiv:2010.12149.
33. Osterlund S, Razavi K, Bos H, Giuffrida C. Parmesan: sanitizer-guided greybox fuzzing. In 29th USENIX Security Symposium (USENIX Secu-

rity 20), 2020.
34. Wen C, Wang H, Li Y, Qin S, Liu Y, Xu Z, et al. Memlock: memory usage guided fuzzing. In ICSE, 2020.
35. Wang H, Xie X, Li Y, Wen C, Liu Y, Qin S, et al. Typestate-guided fuzzer for discovering use-after-free vulnerabilities. In 2020 IEEE/ACM

42nd International Conference on Software Engineering: Seoul, South Korea, 2020.
36. Kim T, Kim CH, Rhee J, Fei F, Tu Z, Walkup G, et al. Rvfuzzer: finding input validation bugs in robotic vehicles through control-guided test-

ing. In 28th USENIX Security Symposium (USENIX Security 19), 2019. p. 425–42.

30 of 33 WANG ET AL.

https://orcid.org/0000-0003-3408-4153
https://orcid.org/0000-0003-3408-4153

37. Lemieux C, Padhye R, Sen K, Song D. Perffuzz: automatically generating pathological inputs. In Proceedings of the 27th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, 2018. p. 254–65.

38. Petsios T, Zhao J, Keromytis AD, Jana S. Slowfuzz: automated domain-independent detection of algorithmic complexity vulnerabilities. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017. p. 2155–68.

39. Feng X, Sun R, Zhu X, Xue M, Wen S, Liu D, et al. Snipuzz: black-box fuzzing of IoT firmware via message snippet inference. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security, 2021. p. 337–50.

40. Gascon H, Wressnegger C, Yamaguchi F, Arp D, Rieck K. Pulsar: stateful black-box fuzzing of proprietary network protocols. In International
Conference on Security and Privacy in Communication Systems, 2015. p. 330–47.

41. Shu Z, Yan G. IoTInfer: automated blackbox fuzz testing of IoT network protocols guided by finite state machine inference. IEEE Internet
Things J. 2022;9:22737–51.

42. De Ruiter J, Poll E. Protocol state fuzzing of tls implementations. In 24th USENIX Security Symposium (USENIX Security 15), 2015. p.
193–206.

43. Zalewski M. American fuzzy lop, 2020. http://lcamtuf.coredump.cx/afl/
44. Bohme M, Pham V-T, Roychoudhury A. Coverage-based greybox fuzzing as markov chain. IEEE Trans Softw Eng. 2017;45(5):489–506.
45. Lyu C, Ji S, Zhang C, Li Y, Lee W-H, Song Y, Beyah R. MOPT: optimized mutation scheduling for fuzzers. In 28th USENIX Security Sympo-

sium (USENIX Security 19), 2019. p. 1949–66.
46. Chen P, Liu J, Chen H. Matryoshka: fuzzing deeply nested branches. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, 2019. p. 499–513.
47. Yue T, Tang Y, Yu B, Wang P, Wang E. Learnafl: Greybox fuzzing with knowledge enhancement. IEEE Access. 2019;7:117029–43.
48. Zhang G, Wang P, Yue T, Kong X, Huang S, Zhou X, Lu K. Mobfuzz: adaptive multi-objective optimization in gray-box fuzzing. In Network

and Distributed Systems Security (NDSS) Symposium 2022, 2022.
49. Lemieux C, Sen K. Fairfuzz: targeting rare branches to rapidly increase greybox fuzz testing coverage, 2017. arXiv preprint arXiv:1709.07101.
50. Godefroid P, Levin MY, Molnar DA. Automated whitebox fuzz testing. In Network and Distributed Systems Security (NDSS) Symposium,

vol. 8, 2008. p. 151–66.
51. Cadar C, Dunbar D, Engler DR. Klee: unassisted and automatic generation of high-coverage tests for complex systems programs, vol. 8, OSDI,

2008. p. 209–24.
52. Jin W, Orso A. Bugredux: reproducing field failures for in-house debugging. In the 34th International Conference on Software Engineering

(ICSE), 2012. p. 474–84.
53. Haller I, Slowinska A, Neugschwandtner M, Bos H. Dowsing for overflows: a guided fuzzer to find buffer boundary violations. In 22nd USE-

NIX Security Symposium (USENIX Security 13), 2013. p. 49–64.
54. Bohme M, Oliveira BrunoCDS, Roychoudhury A. Partition-based regression verification. In the 35th International Conference on Software Engi-

neering (ICSE), 2013. p. 302–11.
55. Santelices R, Chittimalli PK, Apiwattanapong T, Orso A, Harrold MJ. Test-suite augmentation for evolving software. In 2008 23rd IEEE/ACM

International Conference on Automated Software Engineering, 2008. p. 218–27.
56. Xu Z, Kim Y, Kim M, Rothermel G, Cohen MB. Directed test suite augmentation: techniques and tradeoffs. In Proceedings of the eighteenth

ACM SIGSOFT international symposium on Foundations of software engineering, 2010. p. 257–66.
57. Rossler J, Zeller A, Fraser G, Zamfir C, Candea G. Reconstructing core dumps. In 2013 IEEE Sixth International Conference on Software Test-

ing, Verification and Validation, 2013. p. 114–23.
58. McMinn P. Search-based software test data generation: a survey. Softw Test Verification Reliab. 2004;14(2):105–56.
59. McMinn P. Search-based software testing: past, present and future. In 2011 IEEE Fourth International Conference on Software Testing, Verifica-

tion and Validation Workshops, 2011. p. 153–63.
60. Miller W, Spooner DL. Automatic generation of floating-point test data. IEEE Trans Softw Eng. 1976;3:223–6.
61. Wegener J, Baresel A, Sthamer H. Evolutionary test environment for automatic structural testing. Inform Softw Technol. 2001;43(14):841–54.
62. Buehler O, Wegener J. Evolutionary functional testing of an automated parking system. In Proceedings of the International Conference on Com-

puter, Communication and Control Technologies (CCCT’03) and the 9th. International Conference on Information Systems Analysis and Synthesis
(ISAS’03), Florida, USA, 2003.

63. Buhler O, Wegener J. Evolutionary functional testing. Comput Oper Res. 2008;35(10):3144–60.
64. Puschner P, Nossal R. Testing the results of static worst-case execution-time analysis. In Proceedings 19th IEEE Real-Time Systems Symposium

(Cat. No. 98CB36279), 1998. p. 134–43.
65. Wegener J, Sthamer H, Jones BF, Eyres DE. Testing real-time systems using genetic algorithms. Softw Qual J. 1997;6(2):127–35.
66. Wegener J, Grochtmann M. Verifying timing constraints of real-time systems by means of evolutionary testing. Real-Time Syst. 1998;15(3):

275–98.
67. Schultz AC, Grefenstette JJ, De Jong KA. Test and evaluation by genetic algorithms. IEEE Expert. 1993;8(5):9–14.
68. Briand LC, Feng J, Labiche Y. Using genetic algorithms and coupling measures to devise optimal integration test orders. In Proceedings of the

14th International Conference on Software Engineering and Knowledge Engineering, 2002. p. 43–50.
69. Colanzi TE, Assunccao WKG, Vergilio SR, Pozo A. Integration test of classes and aspects with a multi-evolutionary and coupling-based

approach. In International Symposium on Search Based Software Engineering, 2011. p. 188–203.
70. Li Z, Harman M, Hierons RM. Search algorithms for regression test case prioritization. IEEE Trans Softw Eng. 2007;33(4):225–37.
71. Briand LC, Labiche Y, Shousha M. Stress testing real-time systems with genetic algorithms. In Proceedings of the 7th annual conference on

Genetic and evolutionary computation, 2005. p. 1021–8.
72. Jia Y, Harman M. Constructing subtle faults using higher order mutation testing. In 2008 Eighth IEEE International Working Conference on

Source Code Analysis and Manipulation, 2008. p. 249–58.
73. Cohen MB, Gibbons PB, Mugridge WB, Colbourn CJ. Constructing test suites for interaction testing. In 25th International Conference on Soft-

ware Engineering, 2003. Proceedings, 2003. p. 38–48.
74. Petke J, Yoo S, Cohen MB, Harman M. Efficiency and early fault detection with lower and higher strength combinatorial interaction testing. In

Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, 2013. p. 26–36.
75. Cohen MB, Dwyer MB, Shi J. Interaction testing of highly-configurable systems in the presence of constraints. In Proceedings of the 2007 inter-

national symposium on Software testing and analysis, 2007. p. 129–39.

WANG ET AL. 31 of 33

http://lcamtuf.coredump.cx/afl/

76. Derderian K, Hierons RM, Harman M, Guo Q. Automated unique input output sequence generation for conformance testing of fsms. Comput
J. 2006;49(3):331–44.

77. Derderian KA. Automated test sequence generation for finite state machines using genetic algorithms. Ph.D. Thesis, Oxford,UK, 2006.
78. Lehre PK, Yao X. Runtime analysis of the (1+ 1) ea on computing unique input output sequences. Inf Sci. 2014;259:510–31.
79. Tracey N, Clark J, Mander K, McDermid J. Automated test-data generation for exception conditions. Softw Pract Experience. 2000;30(1):

61–79.
80. Tracey N, Clark J, McDermid J, Mander K. A search-based automated test-data generation framework for safety-critical systems. In Systems

engineering for business process change: new directions Springer; 2002. p. 174–213.
81. Medicherla RK, Komondoor R, Roychoudhury A. Fitness guided vulnerability detection with greybox fuzzing. In Proceedings of the

IEEE/ACM 42nd International Conference on Software Engineering Workshops, 2020. p. 513–20.
82. Chen H, Xue Y, Li Y, Chen B, Xie X, Wu X, Liu Y. Hawkeye: towards a desired directed grey-box fuzzer. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, 2018. p. 2095–108.
83. Liang H, Zhang Y, Yu Y, Xie Z, Jiang L. Sequence coverage directed greybox fuzzing. In 2019 IEEE/ACM 27th International Conference on

Program Comprehension (ICPC), 2019. p. 249–59.
84. Situ L, Wang L, Li X, Guan L, Zhang W, Liu P. Energy distribution matters in greybox fuzzing. In 2019 IEEE/ACM 41st International Confer-

ence on Software Engineering: Companion Proceedings (ICSE-Companion), 2019. p. 270–1.
85. Wustholz V, Christakis M. Targeted greybox fuzzing with static lookahead analysis, 2019. arXiv preprint arXiv:1905.07147.
86. Ji T, Wang Z, Tian Z, Fang B, Ruan Q, Wang H, Shi W. AFLPro: direction sensitive fuzzing. J Inform Secur Appl. 2020;54:102497.
87. Liang H, Jiang L, Ai L, Wei J. Sequence directed hybrid fuzzing. In 2020 IEEE 27th International Conference on Software Analysis, Evolution

and Reengineering (SANER), 2020. p. 127–37.
88. Ye J, Li R, Zhang B. RDFuzz: accelerating directed fuzzing with intertwined schedule and optimized mutation. Math Probl Eng. 2020;2020:

1–12.
89. Wang Z, Liblit B, Reps T. TOFU: target-orienter fuzzer, 2020. arXiv preprint arXiv:2004.14375.
90. Li R, Liang H, Liu L, Ma X, Qu R, Yan J, Zhang J. GTFuzz: guard token directed grey-box fuzzing. In 2020 IEEE 25th Pacific Rim Interna-

tional Symposium on Dependable Computing (PRDC), 2020. p. 160–70.
91. Zong P, Lv T, Wang D, Deng Z, Liang R, Chen K. Fuzzguard: filtering out unreachable inputs in directed grey-box fuzzing through deep learn-

ing, 2020.
92. Huang H, Guo Y, Shi Q, Yao P, Wu R, Zhang C. Beacon: directed grey-box fuzzing with provable path pruning. In Proceedings of the 42nd

IEEE Symposium on Security and Privacy, 2021.
93. Lee G, Shim W, Lee B. Constraint-guided directed greybox fuzzing. In 30th USENIX Security Symposium (USENIX Security 21), 2021.
94. Canakci S, Delshadtehrani L, Eris F, Taylor MB, Egele M, Joshi A. DirectFuzz: automated test generation for rtl designs using directed gray-

box fuzzing. In DAC, 2021.
95. Zhu K, Lu Y, Huang H, Yu L, Zhao J. Constructing more complete control flow graphs utilizing directed gray-box fuzzing. Appl Scie. 2021;

11(3):1351.
96. Wang S, Jiang X, Yu X, Sun S. KCFuzz: directed fuzzing based on keypoint coverage. In International Conference on Artificial Intelligence and

Security, 2021. p. 312–25.
97. Du Z, Li Y, Liu Y, Mao B. Windranger: a directed greybox fuzzer driven by deviation basic blocks. In 2022 IEEE/ACM 44th International Con-

ference on Software Engineering: Companion Proceedings (ICSE-Companion), 2022.
98. Jain V, Rawat S, Giuffrida C, Bos H. TIFF: using input type inference to improve fuzzing. In Proceedings of the 34th Annual Computer Security

Applications Conference, 2018. p. 505–17.
99. Padhye R, Lemieux C, Sen K, Simon L, Vijayakumar H. Fuzzfactory: domain-specific fuzzing with waypoints. Proc ACM Program Lang.

2019;3(OOPSLA):1–29.
100. Chen Y, Li P, Xu J, Guo S, Zhou R, Zhang Y, et al. Savior: towards bug-driven hybrid testing, 2019. arXiv preprint arXiv:1906.07327.
101. Medicherla RK, Nagalakshmi M, Sharma T, Komondoor R. HDR-Fuzz: detecting buffer overruns using addresssanitizer instrumentation and

fuzzing, 2021. arXiv preprint arXiv:2104.10466.
102. Li P, Liu Y, Meng W. Understanding and detecting performance bugs in markdown compilers. In 36th IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2021.
103. Christakis M, Muller P, Wustholz V. Guiding dynamic symbolic execution toward unverified program executions. In Proceedings of the 38th

International Conference on Software Engineering, 2016. p. 144–55.
104. Du X, Chen B, Li Y, Guo J, Zhou Y, Liu Y, Jiang Y. Leopard: identifying vulnerable code for vulnerability assessment through program met-

rics. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), 2019. p. 60–71.
105. 9 documentation c. Undefined behavior sanitizer, 2020. http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
106. zynamics.com. Bindiff, 2020. https://www.zynamics.com/bindiff.html
107. Du X. Towards building a generic vulnerability detection platform by combining scalable attacking surface analysis and directed fuzzing. In

International Conference on Formal Engineering Methods, 2018. p. 464–8.
108. Mathis B, Gopinath R, Mera M, Kampmann A, Hoschele M, Zeller A. Parser-directed fuzzing. In Proceedings of the 40th ACM SIGPLAN

Conference on Programming Language Design and Implementation, 2019. p. 548–60.
109. Chen Y, Jiang Y, Ma F, Liang J, Wang M, Zhou C, et al. Enfuzz: ensemble fuzzing with seed synchronization among diverse fuzzers. In 28th

USENIX Security Symposium (USENIX Security 19), 2019. p. 1967–83.
110. Liang J, Jiang Y, Chen Y, Wang M, Zhou C, Sun J. PAFL: extend fuzzing optimizations of single mode to industrial parallel mode. In Proceed-

ings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engi-
neering, 2018. p. 809–14.

111. Luo C, Meng W, Li P. Selectfuzz: efficient directed fuzzing with selective path exploration. In IEEE Symposium on Security and Privacy (SP),
IEEE; 2023. p. 2693–707.

112. Chen Y, Mu D, Xu J, Sun Z, Shen W, Xing X, et al. PTRIX: efficient hardware-assisted fuzzing for cots binary. In Proceedings of the 2019
ACM Asia Conference on Computer and Communications Security, 2019. p. 633–45.

113. Zhang G, Zhou X, Luo Y, Wu X, Min E. Ptfuzz: guided fuzzing with processor trace feedback. IEEE Access. 2018;6:37302–13.
114. Swiecki R. Honggfuzz, 2016. Available online at: http://code.google.com/p/honggfuzz

32 of 33 WANG ET AL.

http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://www.zynamics.com/bindiff.html
http://code.google.com/p/honggfuzz

115. Wang P, Krinke J, Zhou X, Lu K. Avpredictor: comprehensive prediction and detection of atomicity violations. Concurr Comput: Pract Experi-
ence. 2019;31(15):e5160.

116. Wang P, Krinke J, Lu K, Li G, Dodier-Lazaro S. How double-fetch situations turn into double-fetch vulnerabilities: a study of double fetches in
the linux kernel. In 26th USENIX Security Symposium (USENIX Security 17), 2017. p. 1–16.

117. Mu D, Cuevas A, Yang L, Hu H, Xing X, Mao B, Wang G. Understanding the reproducibility of crowd-reported security vulnerabilities. In
27th USENIX Security Symposium (USENIX Security 18), 2018. p. 919–36.

118. Fell J. A review of fuzzing tools and methods. 2017. PenTest Magazine.
119. Böhme M, Cadar C, Roychoudhury A. Fuzzing: challenges and reflections. IEEE Softw. 2020;38(3):79–86.
120. Eisele M, Maugeri M, Shriwas R, Huth C, Bella G. Embedded fuzzing: a review of challenges, tools, and solutions. Cybersecurity. 2022;5(1):18.
121. Saavedra GJ, Rodhouse KN, Dunlavy DM, Kegelmeyer PW. A review of machine learning applications in fuzzing, 2019. arXiv preprint arXiv:

1906.11133.
122. Wang Y, Jia P, Liu L, Huang C, Liu Z. A systematic review of fuzzing based on machine learning techniques. PloS one. 2020;15(8):e0237749.
123. Zhang Y, Zhang J, Zhang D, Mu Y. Survey of directed fuzzy technology. In 2018 ieee 9th international conference on software engineering and

service science (icsess), IEEE; 2018. p. 1–4.
124. Nguyen HL, Grunske L. BeDivFuzz: integrating behavioral diversity into generator-based fuzzing. In Proceedings of the 44th international con-

ference on software engineering, ACM; 2022. p. 249–61.
125. Godefroid P, Kiezun A, Levin MY. Grammar-based whitebox fuzzing. In Proceedings of the 29th acm sigplan conference on programming lan-

guage design and implementation, ACM; 2008. p. 206–15.
126. Padhye R, Lemieux C, Sen K, Papadakis M, Le Traon Y. Semantic fuzzing with zest. In Proceedings of the 28th acm sigsoft international sympo-

sium on software testing and analysis, ACM; 2019. p. 329–40.
127. Tech P. Peach fuzzer platform, 2020. https://www.peach.tech/products/peach-fuzzer/peach-platform/
128. Holler C, Herzig K, Zeller A. Fuzzing with code fragments. In 21st usenix security symposium (usenix security 12), USENIX; 2012. p. 445–58.
129. Aschermann C, Frassetto T, Holz T, Jauernig P, Sadeghi A-R, Teuchert D. Nautilus: fishing for deep bugs with grammars. In NDSS, 2019.
130. Jero S, Pacheco ML, Goldwasser D, Nita-Rotaru C. Leveraging textual specifications for grammar-based fuzzing of network protocols. In Pro-

ceedings of the aaai conference on artificial intelligence, vol. 33, AAAI, 2019. p. 9478–83.
131. Xu W, Park S, Kim T. Freedom: engineering a state-of-the-art dom fuzzer. In Proceedings of the 2020 acm sigsac conference on computer and

communications security, ACM; 2020. p. 971–86.
132. Park S, Xu W, Yun I, Jang D, Kim T. Fuzzing javascript engines with aspect-preserving mutation. In 2020 ieee symposium on security and pri-

vacy (sp), IEEE; 2020. p. 1629–42.
133. Fratric I. Dom fuzzer, 2017. https://github.com/googleprojectzero/domato
134. Wang J, Chen B, Wei L, Liu Y. Skyfire: data-driven seed generation for fuzzing. In 2017 IEEE Symposium on Security and Privacy (SP), IEEE,

2017. p. 579–94.
135. Liu X, Li X, Prajapati R, Wu D. DeepFUZZ: automatic generation of syntax valid c programs for fuzz testing. In Proceedings of the aaai con-

ference on artificial intelligence, vol. 33, AAAI, 2019. p. 1044–51.
136. Godefroid P, Peleg H, Singh R. Learn&fuzz: machine learning for input fuzzing. In 2017 32nd ieee/acm international conference on automated

software engineering (ase), IEEE; 2017. p. 50–9.
137. Whitehouse O. Introduction to anti-fuzzing: a defence in depth aid, 2014. https://www.nccgroup.trust/sg/about-us/newsroom-and-events/blogs/

2014/january/introduction-to-anti-fuzzing-a-defence-in-depth-aid/
138. Edholm E, Göransson D. 2016. Escaping the fuzz-evaluating fuzzing techniques and fooling them with anti-fuzzing.
139. Jung J, Hu H, Solodukhin D, Pagan D, Lee KH, Kim T. Fuzzification:fAnti-Fuzzingg techniques. In 28th Usenix Security Symposium (Usenix

Security 19), USENIX Association; 2019. p. 1913–30.
140. Güler E, Aschermann C, Abbasi A, Holz T. fAntiFuzzg: impeding fuzzing audits of binary executables. In 28th Usenix Security Symposium

(Usenix Security 19), USENIX Association; 2019. p. 1931–47.
141. Li Y, Meng G, Xu J, Zhang C, Chen H, Xie X, Wang H, Liu Y. Vall-nut: principled anti-grey box-fuzzing. In 2021 ieee 32nd International Sym-

posium on Software Reliability Engineering (issre), IEEE; 2021. p. 288–99.
142. Zhou Z, Wang C, Zhao Q. No-fuzz: efficient anti-fuzzing techniques. In International conference on security and privacy in communication sys-

tems, Springer; 2022. p. 731–51.
143. Jiang M, Xu T, Zhou Y, Hu Y, Zhong M, Wu L, Luo X, Ren K. Examiner: automatically locating inconsistent instructions between real devices

and cpu emulators for arm. In Proceedings of the 27th acm international conference on architectural support for programming languages and oper-
ating systems, ACM; 2022. p. 846–58.

144. Huang H, Yao P, Chiu H-C, Guo Y, Zhang C. Titan: efficient multi-target directed greybox fuzzing.
145. Harman M, Jia Y, Zhang Y. Achievements, open problems and challenges for search based software testing. In 2015 IEEE 8th International

Conference on Software Testing, Verification and Validation (ICST), 2015. p. 1–12.
146. Agrawal R. Sample mean based index policies by o (log n) regret for the multi-armed bandit problem. Adv Appl Probab. 1995;27(4):1054–78.
147. Wei J, Pu C. Tocttou vulnerabilities in unix-style file systems: an anatomical study., vol. 5, FAST; 2005. p. 12–12.
148. Wang P, Lu K, Li G, Zhou X. A survey of the double-fetch vulnerabilities. Concurr Computat: Pract Experience. 2018;30(6):e4345.

How to cite this article: Wang P, Zhou X, Yue T, Lin P, Liu Y, Lu K. The progress, challenges, and perspectives
of directed greybox fuzzing. Softw Test Verif Reliab. 2023;e1869. https://doi.org/10.1002/stvr.1869

WANG ET AL. 33 of 33

https://www.peach.tech/products/peach-fuzzer/peach-platform/
https://github.com/googleprojectzero/domato
https://www.nccgroup.trust/sg/about-us/newsroom-and-events/blogs/2014/january/introduction-to-anti-fuzzing-a-defence-in-depth-aid/
https://www.nccgroup.trust/sg/about-us/newsroom-and-events/blogs/2014/january/introduction-to-anti-fuzzing-a-defence-in-depth-aid/
https://doi.org/10.1002/stvr.1869

	The progress, challenges, and perspectives of directed greybox fuzzing
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Blackbox fuzzing
	2.2 Coverage-guided greybox fuzzing (CGF)
	2.3 DGF
	2.4 Directed whitebox fuzzing
	2.5 Search-based software testing (SBST)

	3 METHODOLOGY
	3.1 Inclusion and exclusion criteria
	3.2 Search process
	3.3 Data collection
	3.4 Data analysis

	4 RESEARCH PROGRESS ON DGF
	4.1 Overview
	4.2 Target identification
	4.2.1 Target locations
	4.2.2 Target bugs
	4.2.3 Distribution of different targets

	4.3 Fitness metrics
	4.3.1 Distance
	4.3.2 Similarity
	4.3.3 Vulnerability prediction models
	4.3.4 Customized fitness metrics
	4.3.5 Distribution of fitness metrics

	4.4 Fuzzing optimization
	4.4.1 Input optimization
	4.4.2 Seed prioritization
	4.4.3 Power scheduling
	4.4.4 Mutator scheduling
	4.4.5 Mutation operations

	4.5 Base tools

	5 CHALLENGES FACED BY DGF
	5.1 Performance deduction
	5.2 Equal-weighted metrics bias seed prioritization
	5.3 The global optimum discrepancy in the distance-based metric
	5.4 Inflexible coordination of the exploration phase and exploitation phase
	5.5 Dependence on the PUT source code

	6 APPLICATION OF DGF
	7 THREATS TO VALIDITY
	8 RELATED WORKS
	9 CONCLUSION AND PERSPECTIVES ON FUTURE TRENDS
	9.1 Exploitation of the relationship between targets
	9.2 Design multi-dimensional fitness metric
	9.3 Multi-objective optimization
	9.4 Target for new domains

	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES

