
Zhang G, Wang PF, Yue T et al. MEBS: Uncovering memory life-cycle bugs in operating system kernels. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 36(6): 1248–1268 Nov. 2021. DOI 10.1007/s11390-021-1593-4

MEBS: Uncovering Memory Life-Cycle Bugs in Operating System
Kernels

Gen Zhang, Peng-Fei Wang, Tai Yue, Xu Zhou, and Kai Lu, Member, CCF

College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China

E-mail: {zhanggen, pfwang, yuetai17, zhouxu, kailu}@nudt.edu.cn

Received May 18, 2021; accepted August 25, 2021.

Abstract Allocation, dereferencing, and freeing of memory data in kernels are coherently linked. There widely exist

real cases where the correctness of memory is compromised. This incorrectness in kernel memory brings about significant

security issues, e.g., information leaking. Though memory allocation, dereferencing, and freeing are closely related, previous

work failed to realize they are closely related. In this paper, we study the life-cycle of kernel memory, which consists of

allocation, dereferencing, and freeing. Errors in them are called memory life-cycle (MLC) bugs. We propose an in-depth

study of MLC bugs and implement a memory life-cycle bug sanitizer (MEBS) for MLC bug detection. Utilizing an inter-

procedural global call graph and novel identification approaches, MEBS can reveal memory allocation, dereferencing, and

freeing sites in kernels. By constructing a modified define-use chain and examining the errors in the life-cycle, MLC bugs

can be identified. Moreover, the experimental results on the latest kernels demonstrate that MEBS can effectively detect

MLC bugs, and MEBS can be scaled to different kernels. More than 100 new bugs are exposed in Linux and FreeBSD, and

12 common vulnerabilities and exposures (CVE) are assigned.

Keywords software security, operating system, memory life-cycle, static analysis, vulnerability detection

1 Introduction

Linux kernels have numerous functions for heap

memory allocation, e.g., kmalloc(). A memory allo-

cation return value (MARV) is the memory pointer

returned by a memory allocation function. Generally

speaking, a MARV is allocated by a source function,

then dereferenced, and at last freed by a sink function.

Therefore, we can summarize allocation, derefer-

encing, and freeing as the life-cycle of kernel mem-

ory. These three steps are closely linked and form

an inseparable entity. This inseparability comes

in three aspects, including allocation-dereferencing,

dereferencing-freeing, and allocation-freeing. The re-

lationship between allocation and dereferencing is ap-

parent. Only correctly-allocated memory can be deref-

erenced, and before dereferencing the memory, alloca-

tion failure should be checked. Furthermore, the freeing

operation is also related to allocation and dereferencing.

After being dereferenced, the allocated memory should

be freed with the correct freeing function corresponding

to the allocation function. By thoroughly considering

the relationships among the inseparable life-cycle, we

introduce memory life-cycle (MLC) bugs.

To begin with, we use an example to show MLC

bugs. In Fig.1, val is improperly freed by kfree().

The sink function should be kfree const() according

to the documents. This is an issue in the allocation-

freeing relationship, where a sink function does not

match the source function. Furthermore, the patch en-

forces a check for val after the allocation operation,

which is related to the allocation-dereferencing relation-

ship, where the verification of the MARV is required.

Moreover, mnt opts is freed in the patch to prevent po-

Regular Paper

Special Section on Software Systems 2021—Theme: Dependable Software Engineering

This work is supported by the National High-Level Personnel for Defense Technology Program of China under Grant No. 2017-
JCJQ-ZQ-013, the National Natural Science Foundation of China under Grant Nos. 61902405 and 61902412, the Natural Science
Foundation of Hunan Province of China under Grant No. 2021JJ40692, the Parallel and Distributed Processing Research Foundation
under Grant No. 6142110190404, and the Research Project of National University of Defense Technology under Grant Nos. ZK20-09
and ZK20-17.

©Institute of Computing Technology, Chinese Academy of Sciences 2021

http://dx.doi.org/10.1007/s11390-021-1593-4

Gen Zhang et al.: MEBS: Uncovering Memory Life-Cycle Bugs in Operating System Kernels 1249

tential memory leaking. In the original code, we can see

that the dereferencing-freeing relationship is ignored in

memory life-cycle, in which a freeing operation is miss-

ing after the dereferencing operation. In addition, it is

not allowed to use mnt opts after being freed to prevent

use-after-free bugs. Therefore, line 16 is eliminated.

Fig.1. Example patch file.

We call these bugs MLC bugs, including five types

of bugs: incorrect allocation-freeing (IAF), unchecked

dereferencing (UD), lacking freeing (LF), use-after-

free (UAF), and double-free (DF). If the allocation

and freeing functions are used incorrectly, an incorrect

allocation-freeing case is matched. An unchecked deref-

erencing bug happens when a MARV is dereferenced

without a null check. In addition, when a MARV is

unfreed, we can identify a lacking freeing bug. When

we dereference a MARV after freeing it, a use-after-free

bug is going to happen. A double-free bug is triggered

when a freed MARV is freed again.

The reason why we concentrate on these bugs is as

follows. 1) MLC bugs are common in kernels because

of commonly-seen memory allocations in operating sys-

tem (OS) kernels. For instance, there are 35 359 alloca-

tion operations in Linux according to our experiments.

More operations indicate a higher possibility to trigger

MLC bugs. MLC bugs are common in kernels because

all memory space goes through allocation, dereferenc-

ing, and freeing. Any error in the life-cycle results in

MLC bugs. 2) MLC bugs can cause severe consequences

and security problems, such as denial-of-service and in-

formation leakage. For instance, we have 12 common

vulnerabilities and exposures (CVE) assigned based on

the detected MLC bugs. Among them, we get high

common vulnerability scoring system (CVSS) 1○ scores.

The scores indicate high-security risks.

Identifying MLC bugs can be challenging. First,

consisting of more than 27 million lines of code and sup-

porting various architectures, the Linux kernel is cer-

tainly a complex software system. Analyzing kernels

demands customized techniques to handle unforeseen

circumstances. Second, to detect MLC bugs, we need a

clear and specific definition. Previous work on memory

errors [1–4] cannot be applied in our situation. Detect-

ing MLC bugs requires precise reconstruction of the

allocation, dereferencing, and freeing sites of the life-

cycle. Detecting MLC bugs is more complicated than

detecting common memory errors. Moreover, there are

challenges in implementing the related rules, e.g., rec-

ognizing the customized source functions. There is no

available approach to identifying a customized source

function in kernels.

To overcome the challenges mentioned above and

detect MLC bugs, we first improve the concept of mem-

ory life-cycle proposed by Zhang [5]. Based on the con-

cept, a formal definition of life-cycle-related rules and

MLC bugs is given. In addition, we implement a mem-

ory life-cycle bug sanitizer (MEBS) to expose MLC

bugs. To begin with, MEBS takes LLVM (low level vir-

tual machine) IR (intermediate representation) of ker-

nel source code as the input. Then, we construct a

global call graph and conduct pointer analysis. Next,

all the source functions, sink functions, and MARVs in

OS kernels are identified by novel analysis techniques.

Moreover, MEBS constructs modified define-use chains

of MARVs. By examining the chains, MLC bugs are

detected.

In addition, we perform evaluations on Linux and

FreeBSD. The entire analysis is finished in several min-

utes, and more than 100 new MLC bugs are exposed.

Patches are submitted to the maintainers, and 12 CVEs

are assigned. The experimental results demonstrate

that MLC bugs widely exist in kernels, and we should

focus on them to prevent security issues. Furthermore,

the results demonstrate that MEBS can effectively de-

tect MLC bugs.

The most critical point in MEBS is that we

treat allocation, dereferencing, and freeing as an in-

divisible entity. This entity contains relationships

among allocation-dereferencing, dereferencing-freeing,

and allocation-freeing. Therefore, we can thoroughly

and completely examine the relationships, and any in-

complete or absent inspection is treated as breaking the

indivisibility. Generally speaking, our work in MLC

bugs is distinguishable from the related work in API

1○Common vulnerability scoring system. https://www.cvedetails.com/, Aug. 2021.

1250 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

misuse [6–9], missing check [10–12], and memory mana-

gement model checkers [13–15]. For example, as a mem-

ory checker, MCChecker [13] checks allocation, derefer-

encing, and freeing of the kernel memory. However,

compared with MEBS, MCChecker fails to follow the

inseparability of memory life-cycle in the following as-

pects. First, MCChecker only checks commonly-used

functions, e.g., kmalloc(). Consequently, incomplete

identification of source functions and sink functions

does not ensure that MCChecker covers all the above-

mentioned relationships. Second, MCChecker only con-

siders the dereferencing-freeing relationship in the er-

ror paths, which leaves the non-error paths unchecked.

Third, MCChecker ignores the allocation-freeing re-

lationship. In conclusion, due to either insufficiency

or absence of examination of the relationships, MC-

Checker does not maintain the inseparability of memory

life-cycle. On the contrary, MEBS solves these prob-

lems by identifying all the source functions and sink

functions, completely checking the paths on the define-

use chain, and thoroughly examining the relationships.

Experiments in Section 5 demonstrate that MEBS can

identify more bugs than MCChecker. The results prove

the importance of the life-cycle inseparability.

In conclusion, we make the following contributions

in this paper.

• We propose a new perspective of memory life-

cycle. This paper proposes a lofty vision that memory

bugs need to be reasoned about holistically concern-

ing the life-cycle of memory. In addition, we improve

the MLC bug definition, including five sub-classes. The

most critical point in MEBS compared with other tools

is that we treat allocation, dereferencing, and freeing as

an indivisible entity. Therefore, we can thoroughly and

completely examine the life-cycle, and any incomplete

or absent inspection is treated as breaking the indivis-

ibility.

• We propose new techniques to detect MLC bugs.

We perform inter-procedural call graph construction

and pointer analysis. Most importantly, we propose

novel methods to detect the source functions, sink func-

tions, and MARVs. Compared with previous methods,

our identification techniques have a higher precision.

In addition, we build define-use chains based on the

identified functions and MARVs to find MLC bugs.

Compared with previous approaches, our bug detection

methods are both effective and scalable.

• We detect 168 MLC bugs and 12 CVEs in Linux

and FreeBSD. These bugs are capable of compromising

the entire system and causing security problems. None

of the detected bugs was discovered by other tools be-

fore.

In the rest of this paper, we discuss about the back-

ground of MLC bugs in Section 2. The design of MEBS

is in Section 3. Section 4 contains the implementation

details. The experimental results are in Section 5. Sec-

tion 6 is the discussion about MEBS. Section 7 contains

related work and Section 8 concludes this paper.

2 MLC Bugs

2.1 Memory Life-Cycle

Zhang first proposed the concept of MLC bug in

MLCSan [5]. Following the concept of MLCSan, we in-

troduce the life-cycle of a MARV as follows.

• Allocation. A MARV is allocated by a source

function.

• Dereferencing. Before using this MARV, a null

check should be enforced. Next, the MARV is derefer-

enced.

• Freeing. Finally, the MARV is freed with the cor-

rect sink function. Any using or freeing is not allowed

after the freeing site.

2.2 Customized Source Functions and Sink

Functions in Kernels

Programmers use source functions to allocate kernel

memory and use sink functions to free the memory. Be-

sides the well-known kmalloc()-kfree(), there are nu-

merous customized source functions and sink functions.

For example, direct memory access (DMA) allows an

input-output (IO) device to send or receive data to the

main memory directly. dma pool alloc() gets a block

of consistent memory for DMA, and dma pool free()

frees the block back into the DMA pool. In this case,

dma pool alloc() and dma pool free() can be called

customized source function and sink function, respec-

tively.

2.2.1 Source Functions

For the customized source functions in OS kernels,

we study the common usage of them and extract the

most frequent features in Table 1. There are four fea-

tures listed in the table, and most of the source func-

tions in the kernel fit these features. Our analysis uti-

lizes these features to identify the customized kernel

source functions in Section 3.

Gen Zhang et al.: MEBS: Uncovering Memory Life-Cycle Bugs in Operating System Kernels 1251

Table 1. List of Features of Source Functions

Feature Description

Pointer type The return value of a source function
should be a pointer value pointing to the
memory space

New pointer A source function usually returns a pointer
value, and this assignment should be the
first operation on this pointer after the ini-
tial declaration

Null check After the allocation of the pointer, it
should be checked to prevent allocation fai-
lure

Memory access After the null check, the pointer is used to
access memory (memory dereferencing)

2.2.2 Sink Functions

OS kernels contain millions of error paths and secu-

rity checks [16]. As shown in Fig.2, A is allocated first,

and then A→ B is allocated. When the null check for

A→ B fails, A should be freed with the corresponding

sink function in the error path. By identifying the error

paths in kernels, we can extract all the customized sink

functions located in the error paths.

2.2.3 Source-Sink Pairs

In addition, by traversing the program paths in a

backward direction from the freeing site to the allo-

cation site, source-sink pairs can be identified. These

pairs indicate the correct usage of the customized source

functions and sink functions.

Fig.2. Error path example.

3 Design of MEBS

3.1 Overview

Fig.3 shows the primary workflow, including three

key stages: preprocessing, analysis, and bug reporting.

1) A global call graph is built in stage 1. In addi-

tion, we perform pointer analysis to help the following

analysis, e.g., alias analysis.

2) Stage 2 contains source function identification,

sink function identification, and define-use chain con-

struction.

3) MLC bugs are reported in stage 3.

3.2 Preprocessing

3.2.1 Call Graph Construction

To conduct inter-procedural analysis, a global call

graph is built, including direct and indirect calls be-

tween functions.

LLVM IR
Call Graph,

Pointer Analysis

Feature-Based

Source Function

Identification

Error-Path Based

Sink Function

Identification

Define-Use Tree

Construction

IAF, UD,

LF, UAF, and DF

Cases

MLC Bugs

3. Bug Reporting

Linux Kernel

Source Code

1. Preprocessing

2. Analysis

Fig.3. Primary workflow of MEBS.

1252 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

The call graph is used in MEBS to detect MLC bugs

across multiple procedures or functions. For example,

we want to identify whether a variable is used to access

memory. The variable is allocated and used in different

functions. In this situation, the call graph may tell

us one function calls another, and we can decide this

variable is allocated and then used to access memory in

these two functions.

3.2.2 Indirect Call Analysis

We incorporate the argument information with

the structure data type (struct for short) containing

address-taken functions to solve indirect call analysis.

The struct is common in OS kernels. Lu et al. [12]

claimed over 85% address-taken functions in Linux were

initially stored in a pointer field of a struct. Therefore,

we can use the type information of the struct with the

argument information to increase the accuracy of in-

direct call analysis. Fig.4 shows a general situation,

where we want to find the target of ind alloc(args)

in line 10. If we only match the argument information

args, we detect two targets: true alloc in line 4 and

false alloc in line 7. However, when we use the struct

type of indirect in line 10 to match the result, we can

discover that true alloc is the target because the type

of indirect is true struct, which is the same as the

type of T1 in line 3.

Fig.4. Indirect call example.

Our approach is to match the struct type at the in-

direct call site with the struct type at the initialization

site. A match can be further verified with the argu-

ment number and type to confirm the targets. When

the struct type does not match anyone, we use only

the argument number and type to identify the targets,

and address-taken functions not initialized in the struct

field can be analyzed in this way.

In the beginning, we traverse the kernel to iden-

tify initialization sites and function declarations to con-

struct two two-key dictionaries. The key of the first dic-

tionary contains the struct type, the offset of the field,

and the key of the second one is the argument number

with type. In general, we can collect [struct type, offset]

as the key of the first dictionary and [num, arg type]

as the key of the second one. The values of the dic-

tionaries are the targets of indirect calls. Next, when

an indirect call site is met, we extract the struct type

and the GEP (GetElementPtr in LLVM, for calcu-

lating pointer address) instruction offset to look up

in the first dictionary. If there is a value matching

this key ([struct type, offset]), the argument informa-

tion ([num, arg type]) is used in the second dictionary

to confirm the result. Otherwise, dictionary 2 directly

identifies the targets with the argument information.

Fig.5 illustrates the procedure of our indirect call ana-

lysis with the two dictionaries.

[struct type, offset]

Dictionary 1

[num, arg type]

Dictionary 2

Indirect Call Site

Target 1 Target 2

Dictionary 1

Hits
Dictionary 1

Misses

Fig.5. Indirect call analysis in MEBS.

3.2.3 Pointer Analysis

Pointer analysis is conducted to detect the aliases

of MARVs. It is fundamental in identifying MLC bugs

because one MARV may propagate to other variables.

These variables should also be tracked to reveal all the

operations on the MARV. MEBS provides the alias re-

sults through the following steps. 1) First, we use the

built-in alias analysis pass (AliasAnalysis) in LLVM.

This pass provides four types of alias results, including

“Must”, “Partial”, “May” and “No”. To reduce inac-

curacy, we consider “Must” and “Partial” as aliased,

“May” and “No” as not-aliased. 2) In addition, we

consider the performance overhead of pointer analysis.

Our initial version of the implementation shows that a

few objects with many aliases mainly cause the over-

head, and we solve this problem by limiting the num-

ber of aliases of these particular variables. Generally

speaking, this limitation only affects less than 50 ob-

jects when the limit is 1 000, and the performance over-

head is reduced to an acceptable level.

Gen Zhang et al.: MEBS: Uncovering Memory Life-Cycle Bugs in Operating System Kernels 1253

3.3 Feature-Based Source Function

Identification

There are numerous customized source functions in

OS kernels, e.g., dma pool alloc(). They are essential

components of kernel sub-systems for customized mem-

ory allocation. Identifying them is critical not only for

MLC bug identification but also for deeply understand-

ing memory allocation in the kernel. However, there is

no existing approach to accomplishing this task effec-

tively. For example, we cannot use natural language

processing to identify source functions because there

is no kernel document describing them in detail. To

solve this problem, we manually study the known cus-

tomized source functions in kernel sub-systems. Then,

we extract the most frequent and representative fea-

tures of the source functions in Table 1. The features

can describe the usage of a source function precisely.

In this step, we use these four features and statisti-

cal methods to identify the customized source functions

in OS kernels. For every call site of a kernel function,

we examine its behaviors to match the four features.

We track the operations on the return value to iden-

tify whether it is a new pointer. Forward flow analysis

is then conducted to detect the null check and mem-

ory access of this return value. If this call site of the

function matches the features, we treat it as a source

function behavior.

Next, we utilize some statistical approaches to fur-

ther improving the precision of source function iden-

tification. When a certain function F is called in the

kernel, we record the number of call sites of F (total fre-

quency ft) and the number of source function behaviors

among these call sites (source function frequency fs).

After traversing the whole kernel, we have the source

function frequency fs and the frequency rate fs
ft

of ev-

ery kernel function. The idea of calculating both fs
and fs

ft
is reasonable. For example, F occurs only once

in the kernel, and this occurrence is incorrectly identi-

fied as a source function behavior due to unavoidable

false positives (FP). In this case, fs of F is 1 and fs
ft

is 100%. However, this high frequency rate cannot be

directly used to treat F as a source function.

By assigning the function a score based on fs
with fs/ft and eliminating candidates below a certain

threshold, we can effectively improve the precision and

reduce the false positives. The full score is 100, and we

give portioned weights to fs and fs/ft. The simplified

equation is Score = w1×fs +w2×fs/ft, where w1 and

w2 are the weights. We thoroughly discuss the weights

and the values of thresholds in Section 5. Lines 1–16 in

Algorithm 1 show the procedure of feature-based source

function identification.

Algorithm 1. Analysis and Bug Reporting

1: function source identification()

2: {SC} = ∅ /* Source functions */

3: ft = 0

4: fs = 0

5: for F in Kernel do

6: ft = ft + 1

7: if features match then

8: fs = fs + 1

9: end if

10: end for

11: for F in Kernel do

12: if Score(fs,
fs
ft

) > Threshold then

13: {SC} = F∪{SC}
14: end if

15: end for

16: end function

17: function sink identification(ErrorPaths)

18: {SK} = ∅ /* Sink functions */

19: {PA} = ∅ /* Source-sink pairs */

20: for P in ErrorPaths do

21: if struct pointer allocated by F1 in {SC} and freed

by F2 then

22: {SK} = F2 ∪ {SK}
23: {PA} = (F1, F2)∪{PA}
24: end if

25: end for

26: end function

27: function marv propagation({SC}, AliasResult)

28: {MARV } = ∅
29: for F in {SC} do
30: if F returns V then

31: {MARV } = {V ∪alias(V)}∪{MARV }
32: end if

33: end for

34: end function

35: function construct define use tree({SC}, {SK},
{MARV })

36: Output: {DUT}
37: end function

38: function bug reporting({MARV }, {DUT}, {PA})
39: Output: {IAF}, {UD}, {LF}, {UAF}, {DF}
40: end function

3.4 Error-Path Based Sink Function

Identification

Sink functions are used to free memory. Identifying

them is a prerequisite to detect kernel memory leak-

ing, use-after-free, and double-free bugs. However, cus-

1254 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

tomized sink functions are also not sufficiently studied

yet. By observing the kernel error paths, we find out

that they are ideal origins for sink function detection.

First, error paths often contain the sink functions in the

error handling code. Second, error paths widely exist

in OS kernels (2 million in Linux), and this is sufficient

for statistical methods.

As shown in Fig.2, freeing a struct pointer contain-

ing another pointer in the error path is commonly seen

in kernels. Therefore, we can extract numerous sink

functions in the millions of error paths in OS kernels.

This method is born to have a high detection preci-

sion because the rules are more direct, compared with

the feature check of source function identification, and

experiment results in Section 5 also prove this observa-

tion.

We use error path results from Lu et al. [16], and

the results contain CFGs (control flow graphs) for ev-

ery kernel function with error paths marked, including

some detailed information, e.g., the branch instruction

to the error path. By examining the checked value of a

branch instruction, we can identify whether this value

is a pointer inside a struct pointer, i.e., A→ B, and

whether this pointer is allocated by our identified source

functions. Then, we go forwards to the error path to

identify function calls operating on this struct pointer,

i.e., A. A hit can be treated as a sink function behavior.

Similar to the source function identification, we record

the number of hits (sink function frequency f) for every

kernel function by traversing the whole kernel. By di-

rectly judging f with a threshold, we can get the kernel

sink functions with an acceptable precision.

Furthermore, after identifying the sink function and

the freed struct pointer, we traverse the program paths

in a backward direction to locate the allocation of this

pointer. In this way, we can extract the source-sink

pairs, which imply the correct usage of the source func-

tions and sink functions. However, due to the precision

of backward flow analysis, some false positives may be

introduced that some source functions and sink func-

tions may be incorrectly matched. We also solve this

problem with statistical methods. By recording the

most frequent pair for a certain function, we obtain hun-

dreds of source-sink pairs from the kernel, and the false

positive rate is relatively low, which is shown in Sec-

tion 5. For example, we can extract alloc1()-free1()

as a source-sink pair from the error path in Fig.2. Lines

17–26 in Algorithm 1 show the procedure of error-path

based sink function identification and source-sink pair

identification.

3.5 Define-Use Chain Construction

3.5.1 MARV Propagation

MARVs are identified through a propagative iden-

tification technique. First, we already identify all the

source functions in a set SC, and we initially consider

all the return values of the source functions as MARVs.

Second, since a MARV tends to propagate to other vari-

ables, we need to track all the related ones and check

the errors in our predefined life-cycle. To do this, we

incorporate the alias results from stage 1. Whenever a

MARV propagates to another variable, MEBS can track

and analyze it. In this propagative manner, MEBS

can form a complete MARV set and detect potential

issues. A MARV i and its aliases are first collected in

a one-dimensional set S1i. S1i contains all variables

propagated from the same MARV i, and line 5 in Algo-

rithm 2 shows this process. S1i is then inserted into a

two-dimensional set S2, which is shown in line 6 in Algo-

rithm 2. S2 records all the identified MARVs. Adopting

these S1i sets can maintain all the alias information.

Algorithm 2. Define-Use Tree Construction

Require: {SC},{SK},{MARV }
1: function construct define use tree({SC}, {SK},
{MARV })

2: {S1} = ∅
3: {S2} = ∅
4: for i in {MARV } do
5: {S1i} = {alias(i)}∪{S1i}
6: {S2} = {S1i}∪{S2}
7: end for

8: {DUT} = ∅
9: for i in S2 do

10: {DUCi} = define use chain(i)

11: {DUTi} = {DUCi}+ branches(i)+{S1i}
12: {DUT} = {DUTi}∪{DUT}
13: end for

14: end function

Ensure: {DUT}

3.5.2 From Chain to Tree

The define-use chain 2○ is widely used in the data-

flow analysis. Given a MARV set, we should examine

all the operations on every element. Our analysis is

flow-sensitive because the operations on MARVs, such

as checking and dereferencing, are strictly ordered. The

2○Wikipedia. Define-use chain. https://en.wikipedia.org/wiki/Use-define chain, Aug. 2021.

Gen Zhang et al.: MEBS: Uncovering Memory Life-Cycle Bugs in Operating System Kernels 1255

value.users() approach provided by LLVM returns a

set of all the using sites of a variable, which cannot be

directly used in our method for its disorder. On the

contrary, we build a modified chain by traversing the

CFG, which extracts the results of value.users() in or-

der and appends the corresponding instruction to the

chain. Constructing the define-use chain is shown in

line 10 in Algorithm 2.

Theoretically, we should construct a complete

define-use chain for all the elements in S2. A single-

branch define-use chain cannot fit some situations. One

case is the conditional branch in the program path. For

different paths, examining a single-branch chain is in-

sufficient, because a single-branch chain cannot repre-

sent multiple program paths with branches. Another

situation is that some MARVs are the aliases of others.

They share the same chain before the propagation site.

Creating a new single-branch chain for every alias can

cause unnecessary performance overhead.

We solve the above issues by modifying a single-

branch define-use chain to a multi-branch one, which is

a define-use tree. When a conditional branch is hit, we

add a new branch to track the remaining operations in

this path. As for the second situation, a new branch is

added at the propagation site to track the aliases. As

shown in Fig.6, a new branch is appended at the condi-

tional site, and the remaining operations are correctly

recorded. MARV2 is propagated from a Store instruc-

tion of MARV1. Moreover, this is where we use the S1i

set. Elements in a set are aliases, and they are added to

the branches of the corresponding define-use tree. This

process is shown in lines 11–12 in Algorithm 2.

Chk CondAlloc Dref

MARV1

Dref Free

MARV 2

FreeStore

Dref Free

Fig.6. Branch of a define-use chain. Dref: Dereferencing.

There is a corner case of define-use tree construc-

tion that needs to be taken care of. The conditional

statements resulting in new branches are mostly error

handling code. The error path and the non-error path

both need to free the MARV at the end. However,

we do not free its aliases when we already free a cer-

tain MARV. For example, as shown in Fig.6, when we

already identify the freeing operations of MARV1, we

mark all the aliases as freed. In this figure, the end of

MARV2 is joined to the end of MARV1.

3.6 MLC Bug Reporting

In this stage, we need to report MLC bugs. Ac-

cording to memory life-cycle, any error in the life-cycle

is reported by MEBS. First, by comparing the correct

source-sink pairs P1 extracted from the error paths

with P2 in the define-use tree, incorrect allocation-

freeing cases can be exposed. We enumerate elements in

P1 and P2, e.g., E1 and E2. If the source functions in

E1 and E2 match, and the sink functions do not match,

we assume an incorrect allocation-freeing bug happens,

and vice versa. Reporting incorrect allocation-freeing

is shown in lines 2–10 in Algorithm 3. Next, by exam-

ining “Chk” and “Dref” in the define-use tree, MEBS

can identify cases where a MARV is dereferenced with-

out verification. Since the operations are recorded in

order, the cases where there is no “Chk” before “Dref”

can be detected. This process is shown in lines 11–15

in Algorithm 3.

Algorithm 3. Bug Reporting

Require: {MARV }, {DUT},{PA}
1: {IAF} = {UD} = {LF} = {UAF} = {DF} = ∅
2: {P1}= {PA}
3: {P2}= pairs({DUT})
4: for E2 in P2 do

5: for E1 in P1 do

6: if E1 not matches E2 then

7: {IAF} = E2∪{IAF}
8: end if

9: end for

10: end for

11: for Dref in {DUT} do
12: if there is no checking then

13: {UD} = Dref∪{UD}
14: end if

15: end for

16: for i in {MARV } do
17: if there is no freeing then

18: {LF} = i∪{LF}
19: end if

20: end for

21: for i in {MARV } do
22: if there are freeing and dereferencing then

23: {UAF} = i∪{UAF}
24: end if

25: if there are freeing and freeing then

26: {DF} = i∪{DF}
27: end if

28: end for

Ensure: {IAF}, {UD}, {LF}, {UAF}, {DF}

As for lacking freeing cases, MEBS traverses the

1256 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

define-use tree of a MARV, and if there is no sink func-

tion to free the memory, a lacking freeing case is de-

tected. In addition, we discover that there are some

common cases where lacking freeing may happen, and

we add these common cases to our detection strategy.

First, for a MARV, there is no sink function to free

it. This case can be detected by checking the end of the

define-use tree. Second, when an unchecked dereferenc-

ing bug happens, we check all the allocation before this

site in the same function, e.g., in Fig.1, when unchecked

dereferencing of val happens, we detect that mnt opts

is allocated before this site in this function. There-

fore, we identify there is a lacking freeing case and add

selinux free mnt opts() to free mnt opts. Examin-

ing the CFG from the function entry to the unchecked

dereferencing site can identify whether there is another

allocation that needs to be freed. Lines 16–20 in Algo-

rithm 3 describe the detection of lacking freeing bugs.

Furthermore, use-after-free and double-free bugs are

more security-critical. By traversing forwards to exam-

ine the operations on a MARV after the freeing site,

we can detect potential use-after-free and double-free

bugs. If a freed MARV is dereferenced or freed again in

the define-use tree, a use-after-free or double-free bug

is triggered. This part of bug reporting is effective due

to our high detection precision of the sink functions.

Lines 21–28 in Algorithm 3 show the process of detect-

ing use-after-free and double-free bugs.

4 Implementation Details

In MEBS, we utilize LLVM/Clang 9.0.1. In total,

MEBS contains approximately 5 000 lines of code and

six LLVM passes.

4.1 Compiling LLVM IR

First, the source code is compiled to LLVM IR as

the input. Older versions of Linux can be successfully

compiled to IR. However, asm-goto is enforced in newer

Linux versions. To the time of our experiments (Sept.

2020), Clang does not support asm-goto yet. To solve

this problem, we use the techniques proposed by Xu et

al. [17] to generate IR. Moreover, we succeed in compil-

ing FreeBSD by following the steps in wllvm 3○.

4.2 Unrolling Loops

In general, unrolling loops is a widely-used strat-

egy in static analysis to prevent analyzing abundant

program paths. In this paper, we unroll loops by con-

verting statements, such as for and while, to if. In

LLVM IR, a loop is composed of several basic blocks.

The entry of a loop is called the header, and the block

jumping out of a loop is the latch. We modify the jump

instruction in the latch to the successor after the loop,

rather than to the header.

4.3 Deciding Memory Access (Dereferencing)

Our approaches need to judge whether a pointer ac-

cesses memory, and we use the following rules. First,

GetElementPointer (GEP) is a pointer calculation in-

struction in LLVM IR. The GEP instructions are taken

as memory dereferencing operations in our methods for

these reasons. In GEP, the offset of the target is calcu-

lated, and the target is loaded. This process is similar

to pointer dereferencing in the C code. However, we do

not mean GEP is a memory dereferencing instruction,

and memory dereferencing requires GEP coupled with

Load and Store. We use GEP for simplicity. Second,

when a pointer or a MARV is passed to a function, there

may be memory access in this function. In this case, we

use a memory-access function set collected previously to

judge this situation, e.g., kmemdup() is collected in the

set. If a function is not in the set, we use a lightweight

inter-procedural analysis to identify whether memory

access exists inside the function.

4.4 Propagation Termination

For propagative MARV identification, we add a ter-

mination condition to stop the MARV propagation, be-

cause it can cause considerable performance overhead,

and it may cause false positives if a MARV propagates

to uncontrollable scenarios. In MEBS, the propagation

is designed to suspend when a user-space variable, a

global variable, or similar cases are hit. It is challeng-

ing to perform more in-depth analyses in these cases.

We weigh the advantages and disadvantages of this

problem. On the positive side, propagating these vari-

ables can cover more MARVs, which makes our ana-

lysis more complete. On the other hand, tracking these

variables is more complex than tracking other kernel

objects, e.g., the declaration and the use of a global

3○Whole-program-llvm. Steps to build bitcode version of FreeBSD 10.0 world and kernel. https://github.com/travitch/whole-
program-llvm/blob/master/doc/tutorial-freeBSD.md, Aug. 2021.

Gen Zhang et al.: MEBS: Uncovering Memory Life-Cycle Bugs in Operating System Kernels 1257

variable and a local one are different. Consequently,

there may be unavoidable performance overhead when

analyzing them. Moreover, the behaviors of these vari-

ables are more complicated, and analyzing them may

cause false positives. Therefore, we decide to sacrifice

MARV coverage to balance the performance overhead

and false positives, and we terminate the propagation

when these values are hit.

5 Evaluation

In this section, we show the evaluation results ac-

cording to the following aspects.

• What is the precision of source function identifi-

cation, sink function identification, and pair identifica-

tion? (Subsections 5.3, 5.5, and 5.6)

• What is the effectiveness of MEBS in identifying

MLC bugs? (Subsection 5.4)

• How is the portability and scalability of MEBS?

(Subsection 5.3)

• Can MEBS outperform other tools? (Subsec-

tion 5.4)

5.1 Setup

Our experiment is performed on a server with 32

cores (Intelr Xeonr CPU E5-2630 v3 @ 2.40 GHz),

128 GB RAM, with Ubuntu 16.04 LTS with kernel 4.4.

All the kernels are compiled with LLVM/Clang 9.0.1.

Table 2 shows the evaluation time in second and

related information. LOC means the number of lines

of code. MEBS accomplishes the bug detection task

in about five minutes. In comparison with previous

LLVM-based kernel static analysis tools (LRSan [18]

analyzed Linux within four hours, and CRIX [12] spent

more than one hour in analyzing Linux), the analysis

time of MEBS is at an acceptable level.

5.2 Indirect Call Analysis Results

We adopt two two-key dictionaries to identify the

targets of the indirect calls. As discussed above, not all

of them can hit the first dictionary. In our evaluation,

we identify 79.1% indirect calls hit dictionary 1 in Linux

and 81.6% in FreeBSD. Similarly, previous tools, such

as CRIX [12] and Pex [19], all had an identification rate

of around 80% when using the struct type information.

The average number of targets for an indirect call

is a benchmark to evaluate the precision of indirect call

analysis. A smaller average number means a higher

precision. We examine this indicator in dictionary 1-

hit cases. The average number of targets is 9.2 in Linux

and 8.3 in FreeBSD. When adopting only the argument

number and type in dictionary 2, the average number

of targets is 173.9 in Linux and 155.1 in FreeBSD. This

result demonstrates that the struct type provides more

accurate information in identifying the indirect call tar-

gets. Moreover, when the first dictionary is hit, we use

the second one to confirm the results. In this part, we

have a confirmation rate of over 90% in both Linux and

FreeBSD.

5.3 Precision of Analysis Phase

5.3.1 Frequency and Frequency Rate of Source
Functions

We discuss how to balance between the frequency

fs and the frequency rate fs/ft. We study the source

function results (Linux) determined by fs and fs/ft in

Table 3 and Table 4, respectively.

We select four thresholds for fs, including the ave-

rage source function frequency of all candidates, the

mode, the median, and zero. By eliminating the can-

didates whose frequencies are strictly smaller than the

thresholds, we collect the number of results and the

precision, respectively, e.g., we have 750 source func-

tions with the source function frequency greater than

or equal to 12.6, and 49.8% of them are true positives.

Similarly, we list the results judging on fs/ft in Ta-

ble 4. When we collect functions with a frequency rate

equal to 1.0, we get 3 563 functions, and the precision is

10.9%. Furthermore, by studying the reason of this low

precision, we find out that functions with fs/ft = 1/1

account for most of the false positives. They occur only

once, and this occurrence is identified as a source func-

tion behavior. We eliminate these false positives by

giving different weights to fs/ft and fs when scoring a

function.

Table 2. Information of Kernels

Version Date LOC (M) Number of Files IR Size Evaluation Time (s)

Linux 2019.09 10.4 18 074 4.4 GB 310

FreeBSD 2019.07 1.3 1 511 557.0 MB 35

1258 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

Table 3. Results of Source Functions Judging on Source Func-
tion Frequency

fs Number Precision (%)

12.6 (average) 750 49.8

2 (mode) 6 153 6.3

2 (median) 6 153 6.3

0 10 276 3.5

Table 4. Results of Source Functions Judging on Source Func-
tion Frequency Rate

fs/ft Number Precision (%)

1.0 3 563 10.9

0.9 3 779 10.1

0.8 4 250 8.9

0.7 4 710 8.1

0.6 5 475 6.9

0.5 7 019 5.3

0.4 7 356 5.0

0.3 8 155 4.5

0.2 9 002 4.1

0.1 9 769 3.7

0.0 10 276 3.5

By considering the precision of fs/ft and fs in judg-

ing source functions, we design a scoring strategy as

below:

fs =

 fs, if fs < 12.6,

12.6, otherwise,

Score = 100.0×
(

49.8

49.8 + 10.9
× fs

12.6
+

10.9

49.8 + 10.9
× fs

ft

)
.

The full score is 100, and we give portioned weights

to fs/ft and fs based on the precision discussed above.

5.3.2 Thresholds of Source Functions

Based on this strategy, we give all candidates a score

to filter out the potential false positives. We also study

the values of thresholds (Linux) in Table 5. As we can

see in Table 5, when the threshold is set to 80.0, the

precision of 69.6% is already higher than the precision

of judging on only fs/ft (10.9%) or fs (48.9%). By set-

ting the threshold to 85.0, we get 405 source functions

with the precision of approximately 80%. This config-

uration has a relatively low false positive rate, and it is

used in Subsection 5.4.

Table 5. Results of Source Functions of Different Thresholds

Threshold Number Precision (%)

60.0 2 232 21.5

70.0 1 062 47.3

80.0 589 69.6

85.0 405 78.3

90.0 242 80.2

95.0 62 96.8

5.3.3 Thresholds of Sink Functions

We extract customized sink functions from the er-

ror paths as discussed previously. By recording the sink

function frequency f, we list the results (Linux) in Ta-

ble 6. We list the number of results and precision of the

candidates whose frequencies are greater than or equal

to the thresholds. We extract 2 408 sink functions in

total, and the precision is 65.0%, which is even higher

than source functions scoring more than 70.0. This re-

sult implies that identifying sink functions in the error

paths can considerably reduce the false positives. When

the threshold is 4, we have 273 sink functions with a

reasonably high precision. This configuration is used in

Subsection 5.4.

Table 6. Results of Sink Functions of Different Thresholds

Threshold Number Precision (%)

4.8 (Average) 226 83.2

4.0 273 79.8

3.0 368 76.1

2.0 626 75.5

1.0 2 408 65.0

5.3.4 Source-Sink Pairs

When we identify a sink function in the error path,

we go back to the allocation site of this freed pointer

and identify a source-sink pair. The precision of source

function and sink function identification affects the pre-

cision of pair identification, and we use source functions

whose scores are greater than 85.0 and sink functions

whose scores are greater than 4 as our configuration.

Then, we record the frequency of each pair and select

the most frequent pair for a source function or a sink

function. We get 362 source-sink pairs, containing 245

true positives, with precision of 67.7%.

Furthermore, we study the false positives of source

function identification, sink function identification, and

pair identification and propose some methods to reach

a much higher precision in Subsection 5.5.

Gen Zhang et al.: MEBS: Uncovering Memory Life-Cycle Bugs in Operating System Kernels 1259

In conclusion, we list our analysis statistics (Linux

and FreeBSD) in Table 7 with the above-discussed con-

figuration. Besides the number of source functions (col-

umn SC), sink functions (column SK), and pairs (col-

umn Pair), we record the number of MARVs (column

MARV) and the average size of define-use trees (column

Avg. DU).

Table 7. Analysis Statistics of Source Function and Sink Func-
tion Identification

Kernel SC SK Pair MARV Avg. DU

Linux 405 273 362 35 359 15.1

FreeBSD 33 19 25 4 196 10.3

5.3.5 Case Study

We further display the detection results of com-

mon source functions and sink functions. For example,

kmalloc() scores 86.9 in our strategy, kcalloc() scores

94.0, and kzalloc() scores 93.2. Additionally, kfree()

is identified 3 155 times in the error paths, and vfree()

is detected 174 times. These results demonstrate that

our methods can identify these common functions.

For these identified source functions and sink func-

tions, we manually study the proportion of the cus-

tomized ones. We identify 405 source functions in

Linux and exclude kmalloc() and the related functions,

e.g., kzalloc(). The rest are considered as customized

source functions. In total, we get 391 customized source

functions out of 405 (96.5%) functions. For the identi-

fied 273 sink functions, we have 266 customized func-

tions (97.4%).

Identifying these customized source functions and

sink functions can help expose more MLC bugs than

only using common functions. Identifying them can

foster related research on memory life-cycle, including

bug finding and other fields. For example, these source

functions can be used in reverse engineering to precisely

track heap data.

5.4 Exposed Bugs and CVEs

In Table 8, we select part of the detected bugs for

observation 4○. Among these MLC bugs, more than half

are applied or confirmed by maintainers, and others are

submitted.

In the File column of Table 8, several MLC bugs

are discovered in some critical components of the Linux

kernel, e.g., bug 1 is in the net sub-system of Linux.

In addition, the respective source functions and

sink functions are listed in SC and SK, respec-

tively, such as kmalloc() and kfree(). Some are

customized source functions or sink functions, e.g.,

efi call phys prolog() in bug 13.

As for T, there are seven incorrect allocation-freeing

bugs, 19 unchecked dereferencing bugs, 15 lacking free-

ing bugs, five use-after-free bugs, and one double-free

bug in the table.

Additionally, for the MC column in the table, we

conduct comparison experiments with MCChecker [13].

It uses meta-level compilation extensions to check ker-

nel memory allocation, dereferencing, and freeing. We

adjust MCChecker to check the already identified bugs

by MEBS. As Table 8 shows, MCChecker succeeds in

identifying 15 bugs and fails to detect the other 32 bugs.

As discussed in our introduction, the most significant

difference between MEBS and MCChecker is that the

analysis of MEBS is under the memory life-cycle indi-

visibility. The difference can be found in three aspects

when compared with MCChecker. 1) MEBS identifies

all the source functions and sink functions in the ker-

nel. 2) By completely examining the define-use tree,

MEBS detects lacking freeing cases not only in the er-

ror paths but also in the non-error paths. 3) MEBS

considers the allocation-freeing relationship. Because

of the incomplete and absent examination of the rela-

tionship among allocation-dereferencing, dereferencing-

freeing, and allocation-freeing, MCChecker fails in de-

tecting the 32 bugs. Table 9 demonstrates the corre-

sponding bugs that MCChecker cannot find.

In addition, we compare MEBS with MLCSan [5] in

our experiments. The ML column of Table 8 shows

whether MLCSan can identify the bugs. MLCSan can

detect only 11 out of the 47 bugs. In contrast to MLC-

San, MEBS improves the MLC bug definition. We add

use-after-free and double-free to MLC bugs. They com-

plete the original definition of MLCSan. In addition,

we propose new techniques to identify the customized

source functions and sink functions in OS kernels. The

detection approach in MLCSan identifies source func-

tions and sink functions through function calling rela-

tionships, and we propose feature-based source function

identification and error-path based sink function iden-

tification.

Moreover, we compare K-Miner [20] with MEBS in

4○The other part of the detected bugs is available at https://figshare.com/articles/online resource/Bugs Exposed by MEBS/15-
187785, Sept. 2021.

1260 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

Table 8. Part of the Bugs Exposed by MEBS

ID File SC/SK MARV T S MC ML KM

1 awcd kstrndup nul get name IAF A × × ×
2 dat faker kfree const ce→xat back IAF A × × ×
3 dfs cache kfree const ce→ce path IAF A ×

√
×

4 dm1105 kstrndup dev→tsbuf IAF A × × ×
5 libcxgbi kstrndup astr IAF A × ×

√

6 in...m kstrdup str UD A ×
√

×
7 req kmalloc new ra UD A

√
×

√

8 cxi kstrndup der→name UD A × × ×
9 mpt3sas ctl kmalloc ioc number UD A

√ √
×

10 rap kstrdup prop→name UD A × ×
√

11 mc kstrdup const cpumask UD A × ×
√

12 dcache cmnd opcode UD N × × ×
13 lola mixer efi..prolog save pgd UD A × × ×
14 dm..hash kmalloc nreg UD N

√ √
×

15 grant table kstrdup de→args UD N × ×
√

16 s7 ago km..array save pgd UD A × ×
√

17 tda1997x kmalloc imp→table UD A
√

× ×
18 tegra-hsp devm..const db→name UD C × × ×
19 cdgt kmem..zalloc s UD N

√
×

√

20 vt kzalloc vc→vc..buf LF C
√ √

×
21 virtio net kzalloc p LF C × × ×
22 mon client kmemdup nul old→cfg LF A

√
× ×

23 tty io tty..device tty→dev LF N ×
√ √

24 vpfe capture kcalloc payload LF N
√

×
√

25 hooks kmemdup nul arg LF A ×
√

×
26 mixer map km..array pool2 LF A × × ×
27 pcie...host devm kzalloc glue LF N × × ×
28 spi kzalloc glue LF N

√ √
×

29 pcm fabric plat..alloc pd..device LF N × ×
√

30 teg..m9712 plat..alloc ma..codec LF N
√

× ×
31 uinput in...device dev→name UAF N × ×

√

32 tg3 dev...any new skb UAF C × ×
√

33 core clear bit flags UAF C × × ×
34 inode put page page UAF N × × ×
35 keyctl kfree name UAF N

√
×

√

36 kt...ts dev...free new buf DF N × ×
√

37 qlnxr verbs kfree qp IAF N ×
√

×
38 cm xm kfree page→ring IAF C × × ×
39 fir os kzalloc dev→ret UD C

√
×

√

40 netdev kzalloc priv UD N
√

× ×
41 fs dir kstrdup const p→name UD C × × ×
42 cloudabi vdso kva alloc addr UD N ×

√
×

43 dpp kzalloc priv UD N
√

×
√

44 mlx5 qp kzalloc mbox in LF N
√ √

×
45 hw verbs ql..alloc q→tbl LF C × × ×
46 aw cir evdev alloc sc..area LF C × × ×
47 altera band ta..create sc→pat LF N × ×

√

Note: T indicates the types of MLC bugs. S demonstrates the status of the corresponding patch, where A means already applied,
C means confirmed and accepted by Linux maintainers but not applied at the time of writing this paper, and N means submitted.
MC indicates whether MCChecker can identify this bug. ML indicates whether MLCSan can identify this bug. KM indicates whether
K-Miner can identify this bug.

Table 9. Bugs Which Cannot Be Detected by MCChecker and the Corresponding Reasons

Bug ID Reason

3, 4, 6, 8, 10, 11, 18, 22, 26, 31, 32, 33, 34, 36, 41, 42 Incomplete source function and sink function identification

2, 14, 19, 23, 27, 29, 37, 39, 47 Error-paths-only free check

7, 12, 13, 16, 17, 40, 43 Allocation-free ignorance

Gen Zhang et al.: MEBS: Uncovering Memory Life-Cycle Bugs in Operating System Kernels 1261

our evaluation. The results of K-Miner are listed in the

KM column of Table 8. In the 47 MLC bugs, K-Miner

can identify 17 of them. K-Miner detects three types

of bugs, including dangling pointer (DP), use-after-free,

and double-free. Meanwhile, MEBS detects five types

of MLC bugs. In these bugs, K-Miner cannot detect in-

correct allocation-freeing, unchecked dereferencing, and

lacking freeing. According to our evaluation, K-Miner

fails to detect most of these three types of MLC bugs.

The reason behind this is the incomplete identification

of the source functions of K-Miner. As our evaluation

indicates, there are 405 allocation functions identified

by MEBS. Missing this large number of functions makes

K-Miner fail to identify the MLC bugs.

In Table 10, we have 12 CVEs assigned for the de-

tected bugs. Two CVEs belong to incorrect allocation-

freeing, nine in unchecked dereferencing, and one in

lacking freeing. Besides, there are one memory leaking

vulnerability and 11 denial-of-service vulnerabilities al-

together. The security issues of these CVEs are clear.

For example, unfreed memory space may cause mem-

ory leaking in OS kernels. Mal-users can compromise

the kernel by using the leaking data. In addition, we

manually investigate the results. The assigned CVEs

cannot be detected by other tools. All the CVEs are

from bugs which can only be detected by MEBS.

5.5 False Positives

5.5.1 False Positives in Source Function, Sink
Function, and Pair Identification

As discussed above, the false positive rates of source

functions whose scores are greater than 85.0, sink func-

tions whose scores are greater than 4, and pairs are

21.7%, 20.2%, and 32.3%, respectively. We manually

investigate the causes of these false positives and pro-

pose some methods to eliminate them.

For source function identification, we have 88 false

positives in total. There are mainly two kinds of false

positives in them. 1) There are 68 search functions,

e.g., get dev by name(). These search functions have

the same features as the source functions. 2) The other

20 functions also have the same features as the source

functions. However, by checking the code of them and

the source functions, we find out that the source func-

tions often reset the allocated pointer inside the func-

tion. These false positives rarely have this procedure,

and they return the allocated pointer directly to the

caller. By using this observation, we successfully ex-

clude 96 functions and achieve much higher precision

of 90.6% (Linux). The result is listed in Table 11.

For sink function identification, we also study the

cause of the false positives. 1) There are 36 debug-

ging functions, e.g., xfs warn(). They are located in

Table 10. CVEs Detected by MEBS

Entry Description Type

19-12378 There is an unchecked kmalloc() of new ra, which might allow an attacker to cause a denial-of-service
(NULL pointer dereference and system crash)

UD

19-12379 There is a memory leaking in a certain case of an ENOMEM outcome of kmalloc() LF

19-12380 phys efi set virtual address map mishandle memory allocation failures UD

19-12381 There is an unchecked kmalloc() of new ra, which might allow an attacker to cause a denial-of-service
(NULL pointer dereference and system crash)

UD

19-12382 There is an unchecked kstrdup() of fwstr, which might allow an attacker to cause a denial-of-service
(NULL pointer dereference and system crash)

UD

19-12454 It uses kstrndup() instead of kmemdup nul(), which allows attackers to have an unspecified impact
via unknown vectors

IAF

19-12455 There is an unchecked kstrndup() of derived name, which might allow an attacker to cause a denial-
of-service (NULL pointer dereference and system crash)

UD

19-12456 It allows local users to cause a denial-of service or possibly have other unspecified impact UD

19-12614 There is an unchecked kstrdup of prop→ name, which might allow an attacker to cause a denial-of-
service (NULL pointer dereference and system crash)

UD

19-12615 There is an unchecked kstrdup const() of node info→ vdev port.name, which might allow an at-
tacker to cause a denial-of-service (NULL pointer dereference and system crash)

UD

20-18574 RESERVED IAF

20-18575 RESERVED UD

1262 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

the error paths and have similar behaviors to the sink

functions. 2) There are 19 functions executed along

with the sink functions. For example, cpumask next()

is executed in the error path and is along with a cus-

tomized sink function. By excluding these functions,

we finally get 233 sink functions with a false positive

rate of 9.6%.

Table 11. Results of Source Functions, Sink Functions, and
Pairs After Eliminating the Known False Positives

Item Total Correct Precision (%)

Source 309 280 90.6

Sink 233 211 90.6

Pair 297 245 82.5

By using the above source functions and sink func-

tions, we get 297 source-sink pairs in total, and 245 of

them are true positives. Compared with 245 out of 363

(67.7%), we eliminate the potential false positives and

reach a higher precision.

5.5.2 False Positives of Bug Reporting

MEBS has an acceptable false positive rate in bug

reporting. According to the evaluation, MEBS outputs

385 reports, and 169 are manually verified as true pos-

itives. We believe a false positive rate of 56.1% is ac-

ceptable in kernel analysis tools. For example, Wang et

al. [18] claimed that 19 bugs were identified after check-

ing over 2 000 lacking-recheck cases. Compared with it,

MEBS has a much lower false positive rate.

We use several techniques to eliminate part of the

false positives. 1) Several practical issues are consi-

dered. Some kernel functions have an init attribute.

If the memory allocation of this kind fails, the whole

system will reboot. Therefore, this kind of functions

is removed from our source function set. Other cases,

e.g., kmalloc(size, GFP NOFAIL), are also handled. 2)

For MARV identification, we utilize a termination con-

dition to suspend the pointer propagation.

We summarize the causes of unsolved false positives.

1) Precise call graph construction and pointer ana-

lysis are always challenging for static analysis, e.g., in-

direct call analysis. More than half of the false posi-

tives are caused by them. For instance, there are three

functions F1, F2, and F3. F1 calls F2 and then F3.

Variable ptr is allocated in F2 and freed in F3. This

case can be incorrectly identified as a lacking freeing

bug since the relation between F2 and F3 is hard to

catch.

2) There are some kernel issues related to implemen-

tation. It is difficult to identify these cases simply by

a pattern match. For instance, the Linux kernel uses a

null pointer dereferencing to check the status of the sys-

tem. Therefore, we exclude them from identified bugs.

Furthermore, devm kmalloc() is a managed memory al-

location function. On driver detach, memory allocated

by it will be automatically freed. These complicated

issues are out of our scope, and we simply treat them

as false positives.

3) Some false positives result from the false positives

in source function identification, sink function identifi-

cation, and pair identification.

4) There are other causes of false positives, such as

programming complexity and imperfect analysis tech-

niques. In total, they are about 15% of the false posi-

tives.

5.6 False Negatives

For the false negatives of source function and sink

function identification, we manually collect source func-

tions and sink functions mentioned in the latest patches

as the ground truth. We study the relationships be-

tween the number of false negatives and thresholds of

source function and sink function identification. For

source function identification, we collect 200 ground-

truth customized source functions, and the result is in

Fig.7. This figure indicates that the number of false

negatives increases as the threshold increases. The false

negative rate is around 10% at the lowest point.

Similarly, we collect 200 ground-truth sink functions

from the patches. Fig.8 lists the relationship between

the number of false negatives and the sink function

thresholds. We eliminate thresholds more than 80 be-

cause the maximum threshold is too large (3 155), and

the false negatives already reach the highest point when

the threshold is 80. When the threshold is 4 as in our

configuration, the false negative rate is around 15%,

which is at an acceptable level.

Though well-designed static analysis approaches are

used, false negatives cannot be entirely removed. First,

not all source code is successfully compiled, and some

sub-components may be missing. However, these in-

compatible files are rare. Besides, we cannot manually

model all assemblies. Therefore, some memory allo-

cation functions are not identified. Additionally, some

source functions store the allocated pointer in the argu-

ments, rather than in the return value. Our approach

cannot cover these situations.

Moreover, there are challenges in pointer analysis.

The identification of aliases and the termination of

Gen Zhang et al.: MEBS: Uncovering Memory Life-Cycle Bugs in Operating System Kernels 1263

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

N
u
m

b
e
r

o
f
F
a
ls

e
 N

e
g
a
ti
v
e
s

in
 S

o
u
rc

e
 F

u
n
c
ti
o
n
s

Source Function Threshold

Fig.7. Relationship between the number of false negatives in source functions and the source function thresholds.

0

20

40

60

80

100

120

140

160

180

200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

N
u
m

b
e
r

o
f
F
a
ls

e
 N

e
g
a
ti
v
e
s

in
 S

in
k
 F

u
n
c
ti
o
n
s

Sink Function Threshold

Fig.8. Relationship between the number of false negatives in sink functions and the sink function thresholds.

pointer propagation would cause potential false neg-

atives. In addition, we extract source-sink pairs from

the error paths. This approach is not able to identify

all the source-sink match rules in the kernel and can

bring about false negatives.

5.7 Portability and Scalability

The techniques in MEBS, e.g., feature-based source

function identification, are not only applicable for Linux

or FreeBSD. Memory life-cycle also exits in the user-

space programs, e.g., pointers are allocated by malloc()

and freed by free(). Source function and sink function

identification can be adopted in these programs. With

slight modification, the define-use tree can also be used

in these programs.

Besides, we can compile programs into LLVM IR in

other platforms as well, such as Windows and macOS,

and conduct analyses on these platforms.

Previous work, such as [12] by Lu et al. and [19]

by Zhang et al., claimed to use scalable techniques but

failed to conduct scalability experiments. Their evalu-

ations were only on the Linux platform.

6 Discussion

6.1 Significance of MLC Bugs

MLC bugs are common in kernels, and they can

cause security issues in the system. We conduct a pio-

neer study in the CVE database. There are 2 667 vul-

nerabilities in the Linux kernel in total from 1999 to

2019. As discussed above, incorrect allocation-freeing

and lacking freeing cases can cause potential memory

leaking as the memory space is improperly freed or not

freed. Similar memory leaking makes up 6.1% of all

the vulnerabilities. Moreover, in an unchecked derefer-

encing case, a MARV is dereferenced without checking,

resulting in a possible null pointer dereferencing, which

occupies 8.7% of the vulnerabilities in the database.

Use-after-free bugs cause memory corruption, making

up 4.9% of the vulnerabilities. Therefore, MLC bugs

are common in OS kernels with 20% of all the recorded

vulnerabilities. On the other hand, from a theoreti-

1264 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

cal perspective, all the allocated memory fits the three

steps in memory life-cycle, and any issue in them causes

MLC bugs.

MLC bugs can cause severe consequences and secu-

rity problems, such as denial-of-service and information

leakage, and we have 12 CVEs assigned. Among them,

we get high CVSS scores. We do not provide proof-of-

concept (PoC) because this work focuses on detection,

and exploitation is beyond the scope.

6.2 Findings

There are some findings from our evaluation results.

Allocation, dereferencing, and freeing do tightly relate

to each other. Our intuition to treat them as insepara-

ble is reasonable. For example, in a lacking freeing case,

unchecked dereferencing often coexists. This is a solid

proof that it is appropriate and necessary to consider

the three steps as indivisible.

Furthermore, the size of the define-use tree varies

from less than 10 to about 2 000. Too many operations

on the same MARV can be error-prone since no one can

guarantee the correctness in thousands of operations.

Next, we discover that source-sink rules exist in kernels.

Programmers should follow the rules when allocating or

freeing memory. However, these rules are often kept in

the comments that sometimes can be difficult to notice

when programming.

Next, several applied patches have not been as-

signed CVE entries. For example, item 16 in Table 8

deals with an incorrect allocation-free case in the Linux

kernel. However, the CVE assignment team does not

accept it as a CVE, because incorrect use of kstrndup()

in this patch can hardly be exploitable, and it is not

a vulnerability. It is always challenging to identify

whether a bug is an exploitable vulnerability. The au-

tomation of this process requires analyzing the poten-

tial security impact of the bug. By automatically in-

ferring the impact of MLC bugs, we are possibly able

to detect bugs, submit patches, and require CVEs with

little manual effort.

6.3 Unified CWE Names of MLC Bugs

CWE (common weakness enumeration) 5○ is a

community-developed list of software and hardware

weakness types. Incorrect allocation-freeing is similar

to CWE-665 (improper initialization) and CWE-404

(improper resource shutdown or release). Unchecked

dereferencing is CWE-476 (null pointer dereference).

Lacking freeing is CWE-772 (missing release of re-

source after effective lifetime). Use-after-free is CWE-

416 (use-after-free). Double-free is CWE-415 (double-

free).

6.4 Backward Analysis of Source-Sink Pairs

The backward analysis does not miss many situa-

tions. For example, the heap block is allocated in func-

tion A, used in function B, and released in function C.

First, such cases are not common in kernels. Accord-

ing to our evaluation, these cases are about 9% of all

the cases. For most of the situations, the allocation,

dereferencing, and freeing sites are in the same func-

tion. Second, even in such rare situations, MEBS can

still find the source-sink pairs. The analysis process of

MEBS is inter-procedural. With the help of an inter-

procedural call graph, we can catch the relationships

between A and B or A and C. We can traverse back-

ward from a sink function in C to the memory pointer

in B, then to the target source function in A. Third,

we can see from the experimental results that MEBS

detects 362 source-sink pairs in Linux. The numbers

of the source functions and sink functions are 405 and

273, respectively. The results indicate that MEBS does

NOT miss many source-sink pairs.

6.5 Future Work

First, considering the false positives in our paper, we

can solve some problems with more precise call graph

construction. In indirect call analysis, we design the

two two-key dictionaries because most address-taken

functions are initialized in a struct field, but not all

of them. We can incorporate more information to deal

with situations where the first dictionary fails. Second,

in source function and sink function identification, we

can use more precise data-flow analysis to determine

whether one function is a source function or a sink func-

tion.

Moreover, by collecting more external information,

we may be able to infer some kernel implementation

issues and make some improvements, e.g., identifying

some permitted allocation failures (often used to check

whether the kernel is functioning correctly). Besides,

assemblies can be manually modeled in kernels to ad-

dress the assembly issue. As for the most challeng-

ing problem in pointer analysis, we can follow the lat-

5○The MITRE corporation. Common weakness enumeration. https://cwe.mitre.org/index.html, Aug. 2021.

Gen Zhang et al.: MEBS: Uncovering Memory Life-Cycle Bugs in Operating System Kernels 1265

est achievements in this scope and adopt more precise

pointer analysis in our future work.

7 Related Work

7.1 Memory Management Model Checking

Model checking is an automatic program verification

method, and specifications need to be written to per-

form the checking. MEBS can be classified as a model

checking tool for memory management, and some re-

lated work has been proposed by researchers [13–15]. We

take the most related one to state our point. En-

gler et al. checked memory with metal-level com-

piler extensions [13] (MCChecker for short). MCChecker

checks kernel memory allocation, dereferencing, and

freeing, which resembles MEBS at first glance. How-

ever, MCChecker fails to follow the inseparability of

memory life-cycle in the following aspects. 1) MC-

Checker does not identify all the source functions and

sink functions in OS kernels. According to its descrip-

tion, it only checks the results of several frequently-used

allocation and freeing functions such as kmalloc() and

kfree(). This insufficiency in source function and sink

function identification hinders MCChecker from com-

pletely examining the relationship related to allocation

and freeing. 2) MCChecker only checks the absent

freeing operations in the error paths, which is an in-

complete examination of the dereferencing-freeing re-

lationship. A thorough inspection of the relationship

should be not only in the error paths but also in the

non-error paths. 3) Identifying errors in the allocation-

freeing pairs is a significant component of revealing the

relationships in the life-cycle, but MCChecker ignores

doing so. Therefore, according to the above three de-

fects, MCChecker does not maintain the indivisibility

of memory life-cycle.

7.2 API Usage Verification

We check the kernel APIs to identify MLC bugs,

and there are several related tools. SSLint [6] identifies

incorrect use of APIs in SSL/TLS protocols. Joern [7]

uses a code property graph to represent a program. Fur-

thermore, APISan [9] adopts semantic cross-checking to

verify APIs. MLC bugs are different from API misuse.

Incorrect allocation-freeing is similar to API misuse.

However, unchecked dereferencing, lacking freeing, use-

after-free, and double-free are not related to API mis-

use. Moreover, none of the above API verification tools

checks the allocation-free relationship and thus breaks

the indivisibility of memory life-cycle. MEBS is diffe-

rent from these tools because we use memory life-cycle

and analyze the allocation-freeing relationship. We not

only concentrate on a single API but also analyze the

allocation-freeing pairs.

7.3 Missing Check Bugs

MEBS can detect unchecked dereferencing. Re-

cently, some related work on missing check bugs has

been published, such as [10–12]. Moreover, Wang et

al. [18] formally defined a lacking-recheck bug. In this

paper, when a critical variable is modified, a security

recheck should be enforced to prevent lacking-recheck

bugs. In addition, CRIX [12] treats missing check bug

as a new bug type. It identifies over 2 000 bugs

via semantic- and context-aware techniques. However,

these missing check tools only inspect the allocation-

dereferencing relationship, not treating the life-cycle as

an inseparable entity. As for our work, MLC bugs cover

missing check cases, including other four types of bugs.

MEBS follows the life-cycle inseparability with addi-

tional analysis of dereference-freeing and allocation-

freeing.

7.4 MLC Bugs

Zhang proposed the first work (MLSSan) using the

concept of MLC bugs [5]. Compared with MLCSan,

MEBS has three aspects of novelties. 1) We extend

the definition of MLC bugs. Use-after-free and double-

free are added to MLC bugs. They complement the

original definition of MLC bugs in MLCSan. In ad-

dition, we propose formal definitions of MLC bugs in

Section 2. We explain the bugs from a higher level of vi-

sion than MLCSan. 2) We propose novel analysis tech-

niques to identify MLC bugs. First, we propose a more

detailed preprocessing stage. This stage contains call

graph construction and pointer analysis. Specifically,

we introduce dictionaries to recognize the targets of in-

direct calls. MLCSan fails to do so. Second, MLCSan

identifies the customized functions based on kmalloc()

and kfree(). We propose feature-based source func-

tion identification and error-path based sink function

identification. Our methods are more precise than the

identification approaches in MLCSan. Third, the bug

reporting of MEBS is also superior to that of MLCSan.

MLCSan does not describe the bug reporting in de-

tail, and from our point of view, its bug reporting may

require intensive manual work. MEBS automates this

process and describes the details clearly. 3) We perform

1266 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

more extensive experiments compared with MLCSan.

First, we list the results of indirect call analysis. MLC-

San fails to do so. Second, we identify 127 more bugs

and 12 more CVEs than MLCSan. Third, MEBS shows

the precision of source function and sink function iden-

tification. We also discuss the selection of thresholds

of the results. MLCSan fails to do so. Fourth, we per-

form analysis on the false positives and the false nega-

tives. MLCSan did not contain this part. In conclusion,

MEBS outperforms MLCSan in the above aspects.

7.5 Typestate Analysis

Tac [21] bridges the gap between typestate and

pointer analyses by machine learning. This paper cap-

tures the correlations between program features and

use-after-free-related aliases to help typestate analysis

in finding true use-after-free bugs. UAFL [22] is a

typestate-guided fuzzer. It performs typestate analysis

to identify the operation sequences potentially violating

the typestate properties and uses operation sequence

coverage to guide the fuzzing process. 2ndStrike [23] is a

method to manifest hidden concurrency typestate bugs

in software testing. It profiles runtime events related to

the typestates and thread synchronization.

The differences between them and MEBS are as

follows. First, the definitions of memory life-cycle of

MEBS and the typestate automata in Tac, UAFL, and

2ndStrike are totally different. Our life-cycle consists

of allocation, dereferencing, and freeing as three indi-

visible steps of a kernel memory pointer. The typestate

of [21,22] contains “live”, “dead”, and “error” in its fi-

nite state automata. The definition of [23] is a little bit

more complex but more or less the same. It has states

for file descriptors, pointers, and locks. For example,

the states of a pointer contain “valid”, “dangle”, and

“null”. The states of the automata in [21–23] are arti-

ficial tags used to record the triggering of use-after-free

and concurrency bugs. Second, the memory life-cycle

is used to describe the behavior of a memory pointer.

When the integrity of the life-cycle is compromised,

MLC bugs happen. The automata in Tac, UAFL, and

2ndStrike show only the results of use-after-free and

concurrency bugs. Our memory life-cycle can reveal

the root cause of MLC bugs, and [21–23] fail to reveal

the root cause. For example, for an unchecked deref-

erencing bug, the life-cycle can tell us it is triggered

because of a dereferencing without a null check. Third,

MEBS can detect five types of bugs. [21,22] detect only

use-after-free bugs, and [23] detects only concurrency

bugs.

7.6 Resource Usage Bugs

RUV [24] employs a mixture of compile-time analysis

and run-time testing to verify that a program conforms

to a resource usage policy specified by the deterministic

finite state automata. The finite state automata details

the allowed sequences of operations on resources. The

resource usage policy of RUV seems similar to the life-

cycle of MEBS, but they are different. Resource usage

policy is a regular language specified by the automata.

The resource usage policy of a program is captured by

its resource usage traces. Manually intensive work is

required to generate the policies from the execution

traces. However, memory pointers are born to have

allocation, dereferencing, and freeing in the life-cycle.

Compared with the resource usage policy, the life-cycle

is not specified by a certain procedure. It is a natu-

ral rule for a memory pointer. The usage of memory

pointers must obey the life-cycle.

State-taint analysis [25] proposes a kind of static

analysis called state-taint analysis to detect resource

bugs. It deals with the open-but-not-used problem of

resources. The differences between state-taint analysis

and MEBS are clear. First, the state-taint analysis con-

siders only the initialization, opening, and using of a re-

source to detect the open-but-not-used problem. Com-

pared with the life-cycle of MEBS, the states of state-

taint analysis are incomplete. MEBS contains alloca-

tion, dereferencing, and freeing of a pointer. Second,

the states of [25] are also manually defined artifacts.

On the one hand, the states are not related to the root

cause of the bugs and vulnerabilities. In contrast, the

life-cycle in MEBS reveals the root cause of MLC bugs.

On the other hand, [25] indicates that it also requires

manually intensive work to extract the rules to detect

the bugs. On the contrary, MEBS requires no such

work to construct the life-cycle.

8 Conclusions

In this paper, we proposed the concept of memory

life-cycle in kernels and conducted systematical study

on MLC bugs. By using feature-based source function

identification and error-path based sink function identi-

fication, we detected 405 and 273 source functions and

sink functions, respectively. Identifying these functions

can foster related research on memory life-cycle, includ-

ing bug finding and other fields in OS kernels. In addi-

tion, we had 169 new bugs identified and 12 CVEs as-

signed. We could identify 127 more bugs and 12 more

CVEs than existing work. The results demonstrated

Gen Zhang et al.: MEBS: Uncovering Memory Life-Cycle Bugs in Operating System Kernels 1267

that MEBS is effective in detecting MLC bugs. More-

over, MLC bugs are common in OS kernels and they

can cause security issues. We need to focus on them to

prevent security issues. Compared with previous work,

we can identify more source functions, sink functions,

and MLC bugs with a higher precision. However, the

pointer analysis in our paper is still inaccurate in some

scenarios. We will propose more precise pointer analy-

ses in the future. Moreover, this paper does not contain

the exploitation of MLC bugs. In the future, we will

propose exploitation methods to automatically exploit

MLC bugs.

References

[1] Akritidis P, Cadar C, Raiciu C, Costa M, Castro M. Pre-

venting memory error exploits with WIT. In Proc. the

2008 IEEE Symposium on Security and Privacy, May 2008,

pp.263-277. DOI: 10.1109/SP.2008.30.

[2] Lee B, Song C, Kim T, Lee W. Type casting verifica-

tion: Stopping an emerging attack vector. In Proc. the 24th

USENIX Security Symposium, Aug. 2015, pp.81-96.

[3] Szekeres L, Payer M, Wei T, Song D. SoK: Eternal

war in memory. In Proc. the 2013 IEEE Symposium

on Security and Privacy, May 2013, pp.48-62. DOI:

10.1109/SP.2013.13.

[4] Xu J, Mu D, Chen P, Xing X, Wang P, Liu P. CREDAL:

Towards locating a memory corruption vulnerability with

your core dump. In Proc. the 2016 ACM SIGSAC Confe-

rence on Computer and Communications Security, Oct.

2016, pp.529-540. DOI: 10.1145/2976749.2978340.

[5] Zhang G. Detecting memory life-cycle bugs with extended

define-use chain analysis. IEEE Access, 2020, 8: 114968-

114980. DOI: 10.1109/ACCESS.2020.2999351.

[6] He B, Rastogi V, Cao Y, Chen Y, Venkatakrishnan V

N, Yang R, Zhang Z. Vetting SSL usage in applica-

tions with SSLINT. In Proc. the 2015 IEEE Symposium

on Security and Privacy, May 2015, pp.519-534. DOI:

10.1109/SP.2015.38.

[7] Yamaguchi F, Golde N, Arp D, Rieck K. Modeling and dis-

covering vulnerabilities with code property graphs. In Proc.

the 2014 IEEE Symposium on Security and Privacy, May

2014, pp.590-604. DOI: 10.1109/SP.2014.44.

[8] Chen H, Wagner D. MOPS: An infrastructure for examin-

ing security properties of software. In Proc. the 9th ACM

Conference on Computer and Communications Security,

Nov. 2002, pp.235-244. DOI: 10.1145/586110.586142.

[9] Yun I, Min C, Si X, Jang Y, Kim T, Naik M. APISan:

Sanitizing API usages through semantic cross-checking. In

Proc. the 25th USENIX Security Symposium, Aug. 2016,

pp.363-378.

[10] Son S, McKinley K S, Shmatikov V. RoleCast: Find-

ing missing security checks when you do not know what

checks are. In Proc. the 2011 ACM International Confe-

rence on Object Oriented Programming Systems Lan-

guages and Applications, Oct. 2011, pp.1069-1084. DOI:

10.1145/2048066.2048146.

[11] Yamaguchi F, Wressnegger C, Gascon H, Rieck K. Chucky:

Exposing missing checks in source code for vulnerability

discovery. In Proc. the 2013 ACM SIGSAC Conference

on Computer and Communications Security, Nov. 2013,

pp.499-510. DOI: 10.1145/2508859.2516665.

[12] Lu K, Pakki A, Wu Q. Detecting missing-check bugs via

semantic- and context-aware criticalness and constraints in-

ferences. In Proc. the 28th USENIX Security Symposium,

Aug. 2019, pp.1769-1786.

[13] Engler D, Chelf B, Chou A, Hallem S. Checking system

rules using system-specific, programmer-written compiler

extensions. In Proc. the 4th Symposium on Operating Sys-

tem Design and Implementation, Oct. 2000, pp.1-16.

[14] Engler D, Chen D Y, Hallem S, Chou A, Chelf B. Bugs as

deviant behavior: A general approach to inferring errors in

systems code. ACM SIGOPS Operating Systems Review,

2001, 35(5): 57-72. DOI: /10.1145/502059.502041.

[15] Brown F, Nötzli A, Engler D. How to build static check-

ing systems using orders of magnitude less code. In Proc.

the 21st International Conference on Architectural Support

for Programming Languages and Operating Systems, April

2016, pp.143-157. DOI: 10.1145/2872362.2872364.

[16] Lu K, Pakki A, Wu Q. Automatically identifying security

checks for detecting kernel semantic bugs. In Proc. the 2019

European Symposium on Research in Computer Security,

Sept. 2019, pp.3-25. DOI: 10.1007/978-3-030-29962-0 1.

[17] Xu M, Qian C, Lu K, Backes M, Kim T. Precise and scal-

able detection of double-fetch bugs in OS kernels. In Proc.

the 2018 IEEE Symposium on Security and Privacy, May

2018, pp.661-678. DOI: 10.1109/SP.2018.00017.

[18] Wang W, Lu K, Yew P C. Check it again: Detect-

ing lacking-recheck bugs in OS kernels. In Proc. the

2018 ACM SIGSAC Conference on Computer and Com-

munications Security, Oct. 2018, pp.1899-1913. DOI:

10.1145/3243734.3243844.

[19] Zhang T, Shen W, Lee D, Jung C, Azab A M, Wang R.

PeX: A permission check analysis framework for Linux ker-

nel. In Proc. the 28th USENIX Security Symposium, Aug.

2019, pp.1205-1220.

[20] Gens D, Schmitt S, Davi L, Sadeghi A R. K-Miner: Un-

covering memory corruption in Linux. In Proc. the 2018

Network and Distributed System Security Symposium, Feb.

2018. DOI: 10.14722/NDSS.2018.23326.

[21] Yan H, Sui Y, Chen S, Xue J. Machine-learning-

guided typestate analysis for static use-after-free de-

tection. In Proc. the 33rd Annual Computer Secu-

rity Applications Conference, Dec. 2017, pp.42-54. DOI:

10.1145/3134600.3134620.

[22] Wang H, Xie X, Li Y, Wen C, Li Y, Liu Y, Sui Y. Typestate-

guided fuzzer for discovering use-after-free vulnerabilities.

In Proc. the 42nd IEEE/ACM International Conference

on Software Engineering, July 2020, pp.999-1010. DOI:

10.1145/3377811.3380386.

[23] Gao Q, Zhang W, Chen Z, Zheng M, Qin F. 2ndStrike:

Toward manifesting hidden concurrency typestate bugs.

ACM SIGPLAN Notices, 2011, 46(3): 239-250. DOI:

10.1145/1961296.1950394.

https://doi.org/10.1109/SP.2008.30
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1145/2976749.2978340
https://doi.org/10.1109/ACCESS.2020.2999351
https://doi.org/10.1109/SP.2015.38
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1145/586110.586142
https://doi.org/10.1145/2048066.2048146
https://doi.org/10.1145/2508859.2516665
https://doi.org//10.1145/502059.502041
https://doi.org/10.1145/2872362.2872364
https://doi.org/10.1007/978-3-030-29962-0_1
https://doi.org/10.1109/SP.2018.00017
https://doi.org/10.1145/3243734.3243844
https://doi.org/10.14722/NDSS.2018.23326
https://doi.org/10.1145/3134600.3134620
https://doi.org/10.1145/3377811.3380386
https://doi.org/10.1145/1961296.1950394

1268 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

[24] Marriott K, Stuckey P J, Sulzmann M. Resource usage ver-

ification. In Proc. the 1st Asian Symposium on Program-

ming Languages and Systems, Nov. 2003, pp.212-229. DOI:

10.1007/978-3-540-40018-9 15.

[25] Xu Z, Wen C, Qin S. State-taint analysis for detecting re-

source bugs. Science of Computer Programming, 2018, 162:

93-109. DOI: 10.1016/j.scico.2017.06.010.

Gen Zhang received his B.S. and

M.S. degrees in computer science

and technology, in 2016 and 2018,

respectively, from National University

of Defense Technology, Changsha. He

is now pursuing his Ph.D. degree in

the College of Computer Science and

Technology, National University of

Defense Technology, Changsha. His research interests

include fuzzing and software testing.

Peng-Fei Wang received his B.S.,

M.S., and Ph.D. degrees in computer

science and technology, in 2011, 2013,

and 2018, respectively, from National

University of Defense Technology,

Changsha. His research interests in-

clude operating system and software

testing.

Tai Yue received his B.S. and

M.S. degrees in computer science and

technology, in 2017 and 2019 from

Nanjing University, Nanjing, and Na-

tional University of Defense Technology,

Changsha, respectively. He is now pur-

suing his Ph.D. degree in the College

of Computer Science and Technology,

National University of Defense Technology, Changsha. His

research interests include fuzzing and software testing.

Xu Zhou received his B.S., M.S.,

and Ph.D. degrees in computer sci-

ence and technology, in 2007, 2009,

and 2014, respectively, from National

University of Defense Technology,

Changsha. He is now an assistant

professor in the College of Computer

Science and Technology, National

University of Defense Technology, Changsha. His research

interests include operating systems and parallel computing.

Kai Lu received his B.S. degree

and Ph.D. degree in 1995 and 1999,

respectively, both in computer science

and technology, from National Univer-

sity of Defense Technology, Changsha.

He is now a professor in the College

of Computer Science and Technology,

National University of Defense Techno-

logy, Changsha. His research interests include operating

systems, parallel computing, and security.

https://doi.org/10.1007/978-3-540-40018-9_15
https://doi.org/10.1016/j.scico.2017.06.010

	1 Introduction
	2 MLC Bugs
	2.1 Memory Life-Cycle
	2.2 Customized Source Functions and Sink Functions in Kernels
	2.2.1 Source Functions
	2.2.2 Sink Functions
	2.2.3 Source-Sink Pairs

	3 Design of MEBS
	3.1 Overview
	3.2 Preprocessing
	3.2.1 Call Graph Construction
	3.2.2 Indirect Call Analysis
	3.2.3 Pointer Analysis

	3.3 Feature-Based Source FunctionIdentification
	3.4 Error-Path Based Sink Function Identification
	3.5 Define-Use Chain Construction
	3.5.1 MARV Propagation
	3.5.2 From Chain to Tree

	3.6 MLC Bug Reporting

	4 Implementation Details
	4.1 Compiling LLVM IR
	4.2 Unrolling Loops
	4.3 Deciding Memory Access (Dereferencing)
	4.4 Propagation Termination

	5 Evaluation
	5.1 Setup
	5.2 Indirect Call Analysis Results
	5.3 Precision of Analysis Phase
	5.3.1 Frequency and Frequency Rate of Source Functions
	5.3.2 Thresholds of Source Functions
	5.3.3 Thresholds of Sink Functions
	5.3.4 Source-Sink Pairs
	5.3.5 Case Study

	5.4 Exposed Bugs and CVEs
	5.5 False Positives
	5.5.1 False Positives in Source Function, Sink Function, and Pair Identification
	5.5.2 False Positives of Bug Reporting

	5.6 False Negatives
	5.7 Portability and Scalability

	6 Discussion
	6.1 Significance of MLC Bugs
	6.2 Findings
	6.3 Unified CWE Names of MLC Bugs
	6.4 Backward Analysis of Source-Sink Pairs
	6.5 Future Work

	7 Related Work
	7.1 Memory Management Model Checking
	7.2 API Usage Verification
	7.3 Missing Check Bugs
	7.4 MLC Bugs
	7.5 Typestate Analysis
	7.6 Resource Usage Bugs

	8 Conclusions

