
Computers & Security 142 (2024) 103851

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

HyperGo: Probability-based directed hybrid fuzzing

Peihong Lin, Pengfei Wang ∗, Xu Zhou, Wei Xie, Kai Lu, Gen Zhang

National University of Defense Technology, Kaifu Qu, Changsha, China

A R T I C L E I N F O A B S T R A C T

Keywords:

Directed greybox fuzzing

Symbolic execution

Hybrid fuzzing

Software security

Directed grey-box fuzzing (DGF) is a target-guided fuzzing intended for testing specific targets (e.g., the potential
buggy code). Despite numerous techniques proposed to enhance directedness, the existing DGF techniques still
face challenges, such as taking into account the difficulty of reaching different basic blocks when designing the
fitness metric, and promoting the effectiveness of symbolic execution (SE) when solving the complex constraints
in the path to the target. In this paper, we propose a directed hybrid fuzzer called HyperGo. To address the
challenges, we introduce the concept of path probability and combine the probability with distance to form
an adaptive fitness metric called probability-based distance. By combining the two factors, probability-based
distance can adaptively guide DGF toward paths that are closer to the target and have more easy-to-satisfy path
constraints. Then, we put forward an Optimized Symbolic Execution Complementary (OSEC) scheme to combine
DGF and SE in a complementary manner. The OSEC would prune the unreachable branches and unsolvable
branches, and prioritize symbolic execution of the seeds whose paths are closer to the target and have more
branches that are difficult to be covered by DGF. We evaluated HyperGo on 2 benchmarks consisting of 25
programs with a total of 120 target sites. The experimental results show that HyperGo achieves 37.75×, 29.11×,
23.34×, 95.61× and 143.22× speedup compared to AFLGo, AFLGoSy, BEACON, WindRanger, and ParmeSan,
respectively in reaching target sites, and 3.44×, 3.63×, 4.10×, 3.26×, and 3.00× speedup in exposing known
vulnerabilities. Moreover, HyperGo discovered 10 undisclosed vulnerabilities from 5 real-world programs.
1. Introduction

Grey-box fuzzing has been a scalable and effective approach to dis-

covering vulnerabilities in software in recent years (Böhme et al., 2016;
Chen et al., 2019, 2020a; Arshad et al., 2020). Based on the feedback
information from the execution of the program under test (PUT), grey-

box fuzzers utilize an evolutionary algorithm to generate specific inputs
that can cause erroneous runtime behavior (e.g., memory corruptions
or data abort) of PUT. Most existing fuzzers are coverage-guided (CGF)
(lcamtuf, 2023; Chen and Chen, 2018; Gan et al., 2020; Lemieux and
Sen, 2018) as they focus on improving the code coverage to test the
deeper level of code. However, not all parts of the code in PUT are
equally important because the majority of the code are safe and only
a small portion has vulnerabilities. For example, according to Shin and
Williams (2013), only 3% of the source code files in Mozilla Firefox have
vulnerabilities. Thus, researchers aim to focus on strengthening the tests
for the vulnerable parts of the code. To achieve directedness, the orig-

inally directed fuzzers were based on symbolic execution (SE) (Ganesh
et al., 2009; Ma et al., 2011; Yang et al., 2011; Marinescu and Cadar,

* Corresponding author.

E-mail addresses: phlin22@nudt.edu.cn (P. Lin), pfwang@nudt.edu.cn (P. Wang), zhouxu@nudt.edu.cn (X. Zhou), xiewei@nudt.edu.cn (W. Xie),

2013), which uses program analysis and constraint solving to generate
inputs that exercise different program paths. Such directed fuzzers cast
the reachability problem as an iterative constraint satisfaction prob-

lem. However, since directed symbolic execution relies on heavyweight
program analysis and constraint solving, it suffers from scalability and
compatibility limitations (Yun et al., 2018).

In 2017, a directed grey-box fuzzer AFLGo (BoHme et al., 2017)
was proposed. It leverages lightweight compile-time instrumentation to
drive the fuzzing toward a set of pre-defined target locations. Different
from CGF which strives to increase the code coverage, DGF intends to
reach and test the target sites (e.g., the potential buggy code). A fitness
metric is a criteria used to evaluate the performance of a solution or
an entity within a specific context. In the context of optimization algo-

rithms, such as genetic algorithms or evolutionary algorithms, a fitness
metric is often used to quantify how well a potential solution solves
a given problem or meets certain objectives. Based on the call graph
and control-flow graph information of the PUT, DGF uses the distance
between inputs and target sites as the fitness metric to assist seed selec-

tion and seed energy allocation. Thus, DGF can prioritize the seeds that
Available online 18 April 2024
0167-4048/© 2024 Elsevier Ltd. All rights reserved.

kailu@nudt.edu.cn (K. Lu), zhanggen@nudt.edu.cn (G. Zhang).

https://doi.org/10.1016/j.cose.2024.103851

Received 1 January 2024; Received in revised form 16 March 2024; Accepted 12 Ap
ril 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cose
mailto:phlin22@nudt.edu.cn
mailto:pfwang@nudt.edu.cn
mailto:zhouxu@nudt.edu.cn
mailto:xiewei@nudt.edu.cn
mailto:kailu@nudt.edu.cn
mailto:zhanggen@nudt.edu.cn
https://doi.org/10.1016/j.cose.2024.103851
https://doi.org/10.1016/j.cose.2024.103851
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2024.103851&domain=pdf

P. Lin, P. Wang, X. Zhou et al.

are more likely to reach the targets (i.e., optimal seeds), which makes
DGF outperforms CGF in specific scenarios, such as patch testing (Peng
et al., 2019), bug reproduction (Kim and Yun, 2019; Wang et al., 2020b;
Nguyen et al., 2020), and potential buggy code verification (Wen et al.,
2020; Wang et al., 2020a).

To accelerate reaching targets and exposing vulnerabilities, the
state-of-the-art DGF techniques proposed in recent years have employed
various methods to enhance directedness. For instance, some DGF tech-

niques redefine the fitness metric based on trace similarity (Hawkeye
(Chen et al., 2018)), data-flow graph (CAFL (Lee et al., 2021), Win-

dRanger (Du et al., 2022)), and sequence coverage (LOLLY (Liang et al.,
2019)) while some other DGF techniques prune infeasible paths (BEA-

CON (Huang et al., 2022)), use the number of oracle queries required by
a fuzzing algorithm to find a target-reaching input (𝑀𝐶2 (Shah et al.,
2022)) and utilize symbolic execution to penetrate the complex path
constraints toward targets, namely directed hybrid fuzzing (Chen et al.,
2020b; Noller et al., 2020, 2019). However, despite these achievements,
the existing DGF techniques still face two challenges.

Challenge 1: Taking into account the difficulty of reaching dif-

ferent basic blocks to design a more effective fitness metric. Fol-

lowing AFLGo, most of the state-of-the-art DGF techniques proposed
new fitness metrics and methods based on the knowledge of program
analysis (e.g., DBB-distance in WindRanger and constraint-distance in
CAFL). Although the methods can be beneficial in testing certain pro-

grams, they may be inaccurate while some specific programs do not
meet their assumptions (e.g., WindRanger assumes that the complex-

ity of path constraints is related to the number of corresponding seed
bytes). During the fuzzing process, reaching different basic blocks has
different probabilities since the path constraints are not all equally sat-

isfied. It is challenging for the fuzzer to reach target sites through those
basic blocks that are difficult to cover. Thus, it is a challenge to adap-

tively analyze the probability of reaching different basic blocks without
prior knowledge of program analysis and combine the probability with
the basic-block-level distance (i.e., BB distance) to form a more effective
fitness metric.

Challenge 2: Promoting the effectiveness of symbolic execution
when solving the complex constraints in the path to the targets.

As DGF takes the random mutation, it may not be able to satisfy the
complex constraints within the allotted time budget. To address this is-
sue, a complementary symbolic execution technique can be introduced
to assist DGF, which should meet three requirements: (1) preferentially
solving the path constraints of the branches closer to target sites, (2)
preferentially solving the path constraints of the branches that are diffi-

cult to be covered by DGF, and (3) pruning the branches that are unsolv-

able by symbolic execution or do not contribute to reaching the target.
However, the symbolic execution techniques used in state-of-the-art hy-

brid fuzzers (such as SAVIOR (Chen et al., 2020b), Symcc (Poeplau and
Francillon, 2020), DigFuzz (Zhao et al., 2019), and Hydiff (Noller et al.,
2020)) cannot meet all three requirements simultaneously. Thus, it is a
challenge to design a complementary symbolic execution technique to
effectively assist DGF.

In this paper, we propose HyperGo, the probability-based directed
hybrid fuzzing. For challenge 1, we introduce the concept of path prob-

ability which is dynamically calculated based on branch hits, and then
combine the path probability with BB distance to form an adaptive
fitness metric called probability-based distance. The path probability
reflects the difficulty of DGF reaching one basic block while the BB dis-

tance reflects the likelihood of DGF reaching the target sites through the
basic block. By combining the two factors, probability-based distance
can effectively guide DGF toward paths that are closer to the target and
have easier-to-satisfy path constraints (Section 3.1). Upon the introduc-

tion of a new fitness metric, it is imperative to optimize the power
schedule to adaptively balance the exploitation of seeds with short dis-

tances and the exploration of more seeds that are reachable to the target
sites (i.e., reachable seeds). To achieve this, we develop an optimization
2

strategy for the power schedule called the Directed Multi-Armed Bandit
Computers & Security 142 (2024) 103851

(DMAB) model. Based on the continuously changing probability-based
distance and path probability, the DMAB model adaptively assigns more
energy to seeds that have shorter seed distances and higher probabili-

ties of covering new branches.

For challenge 2, we propose an Optimal Symbolic Execution Com-

plementary (i.e., OSEC) scheme that combines DGF and SE in a com-

plementary way. In OSEC, we implement three strategies to improve
the effectiveness of the combination between DGF and SE: (1) pruning
branches that do not contribute to reaching target sites (i.e., unreach-

able branches), (2) pruning branches whose path constraints cannot be
solved by SE (i.e., unsolvable branches), and (3) prioritizing the sym-

bolic execution of the seeds whose paths are closer to the target and
have more branches that are difficult to be covered by DGF. The first
and second strategies aim at improving the efficiency of SE, while the
third strategy aims at creating complementarity between SE and DGF.
Specifically, we prompt DGF to explore branches with simpler path con-

straints, while SE is geared towards solving the path constraints of more
complex branches. Based on this method, DGF and SE work in a com-

plementary way and reach target sites more efficiently.

The main contributions of this paper are summarized as follows:

• We propose an adaptive fitness metric called probability-based dis-

tance, which combines basic-block-level distance with path proba-

bility to achieve higher accuracy and efficiency. It can steer DGF
to reach the target sites faster through the closer paths which are
easier to re-exercise.

• We propose a power scheduling optimization strategy called the
DMAB model to implicitly balance the exploitation of seeds with
short distances and the exploration of more reachable seeds. The
seeds that have shorter seed distances and higher probabilities of
covering new branches will be assigned more energy.

• We propose an OSEC scheme to combine DGF and SE in a comple-

mentary manner. The OSEC prunes the unreachable and unsolvable
branches and prioritizes the symbolic execution of the seeds whose
paths are closer to the target and have more branches that are dif-

ficult to be covered by DGF.

• We implemented a tool named HyperGo and evaluate it on
2 datasets consisting of 25 programs with a total of 120 tar-

get sites. The experimental results show that HyperGo achieves
37.75×, 29.11×, 23.34×, 95.61× and 143.22× speedup compared
to AFLGo, AFLGoSy, BEACON, WindRanger, and ParmeSan, respec-

tively in reaching target sites, and 3.44×, 3.63×, 4.10×, 3.26×, and
3.00× speedup in exposing known vulnerabilities. Moreover, Hy-

perGo discovered 10 undisclosed vulnerabilities from 5 real-world
programs.

• HyperGo is publicly available on our website. https://gitee .com /
paynelin /hypergo

2. Background and motivation

2.1. Background

We first introduce the background knowledge of the DGF techniques
and hybrid fuzzing techniques.

Distance calculation and power schedule. AFLGo calculates the
distances between the inputs and predefined targets. The seed distance
is calculated as the arithmetic mean of BB distances of the basic blocks
in the seed’s trace. The BB distance is determined by the number of
edges in the call graph and control-flow graphs to the target basic blocks
while each edge has the same weight. Then, at run-time, AFLGo views
the fuzzing process as a Markov chain and leverages a simulated anneal-

ing strategy to gradually assign more energy to the seeds that are closer
to targets. It casts reachability as an optimization problem to minimize
the distance between the generated seeds and their targets.

Hybrid fuzzing. Hybrid fuzzing involves a combination of fuzzing

and symbolic execution. Fuzzing is excellent at exploring common code

https://gitee.com/paynelin/hypergo
https://gitee.com/paynelin/hypergo

P. Lin, P. Wang, X. Zhou et al.

Fig. 1. Two execution traces toward target function concat_filename().
The nodes denote the basic blocks, and the branch conditions are represented
nearby.

regions and discovering more paths, while symbolic execution can track
seed execution paths and reverse branch conditions to identify the
branches that are not covered by fuzzing, namely unexplored branches.
The constraint-solver is then invoked to solve the path constraints of the
unexplored branches in the abstracted syntax and generate new seeds
to assist fuzzing in satisfying the path constraints. However, existing hy-

brid fuzzing techniques are not well-suited to meet the needs of DGF,
and they face four problems: (1) solving unreachable branches, (2) solv-

ing unsolvable branches, (3) solving the branches that had been covered
by DGF, and (4) performing not well in adaptively adjusting the solv-

ing priority of seeds and the time budget of solving branches. These
problems are more pronounced in DGF compared to CGF.

2.2. Motivation

Example of challenge 1. Fig. 1 shows a real-world example (CVE-

2017-15023) in GNU Binutils 2.29 (GNU, 2023). Two execution traces
(Trace 1 <M, a, b, c, d, f> is marked as red lines, and Trace 2 <M,
e, d, f> is marked as blue lines) are toward the bug function con-
cat_filename(). The call site of concat_filename() is denoted
as T. Following AFLGo, the seed distance of the seed covering Trace 1
(i.e., Seed 1) should be (1+2+3+4+3)/5=2.3, and the seed distance
of the seed covering Trace 2 (i.e., Seed 2) should be (1+2+3)/3=2.
Thus, Seed 2 has a shorter seed distance and will be assigned more en-

ergy. WindRanger introduces the concept of NumOfEffectiveBytes and
combines it with the seed distance to form a new fitness metric called
DBB-distance. Based on the new fitness metric, Seed 1 still has a greater
DBB-distance (2.18) than Seed 2’s DBB-distance (2.06). Thus, in both
works, Seed 2 is given priority.

However, due to the fuzzer’s random mutation strategy, it is diffi-

cult for the fuzzer to satisfy this branch condition and simultaneously
cover the branches <e, d> and <d, T>. Therefore, even though Trace
2 is closer to the target site based on static analysis, it is infeasible
for the fuzzer to reach the target sites. Even if Seed 2 is given more
energy, the fuzzer still struggles to mutate Seed 2 and reach the tar-

get sites. Notably, both BEACON (Huang et al., 2022) and SelectFuzz
(Changhua Luo and Li, 2023) would perform poorly in inferring path
feasibility in this case. The symbolic execution of BEACON would fail
to recognize the path infeasibility of Trace 2 due to the complex path
constraints, and SelectFuzz (Changhua Luo and Li, 2023) would fail
to recognize that Trace 2 is more complex than Trace 1 based on the
number of successor basic blocks. Based on this real-program-based
example, we can conclude that the static fitness metric based on
3

program analysis may be inaccurate. We need an adaptive fitness
Computers & Security 142 (2024) 103851

metric that combines the probability to more accurately guide DGF
in different real programs and different fuzzing stages.

Example of challenge 2. During our research, we investigated the
state-of-the-art directed hybrid fuzzers and evaluated their performance
in directed testing. For instance, we used SAVIOR (Chen et al., 2020b)
to test tcpdump five times, and each test lasted for 24 hours. According
to the test results, we found that only 37% of the new inputs generated
by the symbolic executor are reachable, only 28% of the attempts to
generate new seeds are successful, and only 41% of the newly generated
seeds are regarded as interesting. Furthermore, SAVIOR is incapable of
dynamically adjusting the time budget for solving different branches,
resulting in the skipping of some important branches within a very lim-

ited time budget and the inability to perform symbolic execution on all
seeds within 24 hours. The investigation of SAVIOR demonstrates the
issues of the state-of-the-art directed hybrid fuzzing techniques, such as
solving unreachable or unsolvable branches, and generating a low pro-

portion of interesting seeds. Thus, we need to redesign the working
scheme of symbolic execution to alleviate these issues and com-

bine DGF and SE in a complementary manner.

3. Probability-based directed hybrid fuzzing

In this paper, we propose a probability-based directed hybrid fuzzer
named HyperGo. As Fig. 2 shows, HyperGo consists of the following
three major components.

Static analyzer. The static analyzer is designed to provide precise
information to both the directed greybox fuzzer and the symbolic ex-

ecutor, including unique basic block addresses, BB distances, and sibling
branches of each branch. To calculate the address of all basic blocks, the
static analyzer utilizes a hash algorithm based on the last statements of
each basic block (for example, exam.cpp:24 indicates line 24 of the file
exam.cpp). Then, the static analyzer identifies sibling branches based
on the successive basic blocks of each basic block. For example, if a ba-

sic block 𝐵1 has two successors, 𝐵2 and 𝐵3, the branch <𝐵1, 𝐵2> and
branch <𝐵1, 𝐵3> are sibling branches. Additionally, we adopt the same
method as AFLGo to calculate the BB distances.

Directed greybox fuzzer. The directed greybox fuzzer continuously
mutates seeds in an attempt to generate inputs that can cover target
sites. We introduce the probability-based distance calculation module
and the DMAB model to the fuzzer. The calculation module calculates
the probability-based distance by analyzing the statistical path probabil-

ity and BB distance, and the DMAB model optimizes the power schedule
based on this new fitness metric.

Symbolic executor. The symbolic executor tracks the path of the
seeds provided by the directed greybox fuzzer to identify unexplored
branches. Then, the symbolic executor invokes the constraint-solver to
solve the path constraints of the unexplored branches. We introduce the
OSEC scheme to alleviate the limitations of hybrid fuzzing and comple-

ment the combination of DGF and SE.

At compile time, the static analyzer analyzes the program and stores
the analysis information, such as BB distance, locally. This information
is loaded by the directed greybox fuzzer and the symbolic executor as
the fuzzing campaign is launched. During the fuzzing process, the di-

rected greybox fuzzer continuously generates seeds and provides them
to the symbolic executor. The symbolic executor tracks the paths of
these seeds to identify unexplored branches and generates new inputs
by solving path constraints of the unexplored branches. The new inputs
are then fed back to the directed greybox fuzzer, enabling it to quickly
reach target sites.

3.1. Probability-based distance

We introduce the concept of path probability and combine it with
BB distance to form an adaptive fitness metric called probability-based
distance. In this section, we provide a detailed introduction to the con-
cept and calculation method of probability-based distance.

Computers & Security 142 (2024) 103851P. Lin, P. Wang, X. Zhou et al.

Fig. 2. The overview of HyperGo.
3.1.1. Definition of probability-based distance

In recent works, such as MDPC (Wang et al., 2018), a seed’s ex-

ecution trace in fuzzing is treated as a Markov Chain, and the path
probability is calculated based on branch probabilities in the execution
path. Based on this assumption, we propose a definition for path and
path probability:

Definition 1 (The path of a basic block). Given the execution trace 𝑇 𝑟𝑎𝑐𝑒
for a seed and a basic block 𝑚 in 𝑇 𝑟𝑎𝑐𝑒, the path of 𝑚, denoted as 𝑝𝑎𝑡ℎ𝑚,
is a sequence of basic blocks in 𝑇 𝑟𝑎𝑐𝑒 from the entry basic block to 𝑚.

Definition 2 (Path probability). The path probability of a basic block 𝑚,
given its path 𝑝𝑎𝑡ℎ𝑚, is defined as the product of the probabilities of the
branches that are covered by 𝑝𝑎𝑡ℎ𝑚:

𝑃 (𝑝𝑎𝑡ℎ𝑚) =
∏

{𝑃 (𝑏𝑟𝑖)|𝑏𝑟𝑖 ∈ 𝑝𝑎𝑡ℎ𝑚} (1)

Where 𝑏𝑟𝑖 denotes a branch in 𝑝𝑎𝑡ℎ𝑚, 𝑃 (𝑝𝑎𝑡ℎ𝑚) and 𝑃 (𝑏𝑟𝑖) denote
the path probability and branch probability, respectively. The branch
probability is calculated based on the branch hits:

𝑃 (𝑏𝑟𝑗) =
ℎ𝑖𝑡𝑗

𝑡𝑜𝑡𝑎𝑙∑
𝑘=1

(ℎ𝑖𝑡𝑘)
, (2)

where 𝑃 (𝑏𝑟𝑗) denotes the branch probability of the 𝑗𝑡ℎ branch of the
branch condition (𝑗 can be 1 or 2 for a binary branch), 𝑡𝑜𝑡𝑎𝑙 denotes
the total number of branches, and ℎ𝑖𝑡𝑗 denotes the number of branch
hits of the 𝑗𝑡ℎ branch. Notably, the branch hits of the branches that are
not covered by fuzzing will be regarded as 1 since we believe that any
branch has the probability of being discovered.

Since the fuzzer utilizes a random mutation strategy, the process of
fuzzing can be viewed as a form of random sampling. As the number
of samples increases in random sampling, the statistical probability will
gradually approach the theoretical probability. Therefore, it is reason-

able to expect that the statistical branch probabilities and path proba-

bilities will converge toward their theoretical values with the increasing
number of mutations in fuzzing. The probability 𝑃 (𝑏𝑟𝑗) for all branches
will be updated every minute. We have carefully selected this update
interval to strike a balance between computational overhead and accu-

racy. A very short interval would lead to a high overhead in updating
𝑃 (𝑏𝑟𝑗) for all branches, whereas an overly long interval would result in
inaccuracies when calculating 𝑃 (𝑝𝑎𝑡ℎ𝑚) and the probability-based dis-

tance of each seed. Following thorough evaluations, we have concluded
that updating 𝑃 (𝑏𝑟𝑗) for all branches every minute is the optimal choice
to maintain this balance.

As shown in Fig. 3, we use a simple artifactual C program as an ex-

ample to illustrate how we calculate branch probability and path prob-

ability. In Fig. 3, each node (e.g., 𝑏1) represents a basic block, and each
edge (e.g., <𝑏1, 𝑏2>) represents a basic block transition (i.e., branch).
The path towards 𝑏5 is a sequence of basic blocks starting from the en-
4

try basic block 𝑏1, represented as <𝑏1, 𝑏2, 𝑏3, 𝑏5>. The digitals above
Fig. 3. The calculating method of path probability.

the line (e.g., 0.5 above branch <𝑏1, 𝑏2>) represent the branch proba-

bilities evaluated based on statistical probabilities. For example, if the
branch hits of <𝑏1, 𝑏2> and <𝑏1, 𝑏11> are both 50,000, the branch prob-

abilities of the two branches are both 0.5. After obtaining the branch
probabilities, we can calculate the path probabilities of different basic
blocks. For instance, the statistical path probability of 𝑏5 is calculated
as 0.5×0.3×0.3 = 0.045. Given the high throughput of fuzzing and the
large number of random samples generated over time, it is reasonable
and accurate to calculate branch and path probabilities based on statis-

tical branch hits.

3.1.2. Calculation of probability-based distance

After obtaining the path probabilities of basic blocks, we combine
them with BB distances to calculate the probability-based distances.
The design is based on two considerations: (1) the probability-based
distance is positively correlated with distance and negatively correlated
with path probability, (2) introducing a factor of path probability to es-

tablish both an upper bound and a lower bound for the distance. This
allows us to control the impact of path probability and amplify the ef-

fect of changes in path probability, as the probability-based distance
will exponentially change with path probability.

𝑑𝑝(𝑚,𝑇𝑏) = 𝑑𝑏(𝑚,𝑇𝑏) ⋅ c−𝑃 (𝑝𝑎𝑡ℎ𝑚) (3)

Where 𝑑𝑝(𝑚, 𝑇𝑏) denotes the probability-based distance, 𝑇𝑏 denotes the
target basic block, 𝑑𝑏(𝑚, 𝑇𝑏) denotes the BB distance. 𝑐(−𝑃 (𝑝𝑎𝑡ℎ𝑚)) de-

notes the factor of path probability to establish both an upper bound
(𝑑𝑏(𝑚, 𝑇𝑏)) and a lower bound (𝑐

𝑑𝑏(𝑚,𝑇𝑏)
) for the distance. 𝑃 (𝑝𝑎𝑡ℎ𝑚) de-

notes the path probability of 𝑚, and c is a constant which is greater
than 1.

3.1.3. Calculation of seed distance

Up to now, almost all existing DGF techniques have used the arith-

metic mean of all or part of the BB distances to calculate the seed

distance. However, we have observed that in the seed’s path, there are

P. Lin, P. Wang, X. Zhou et al.

some basic blocks that are very close to or have already reached the
target sites. These basic blocks contribute more to reaching and testing
the target sites and we name them as critical basic blocks. Since the
arithmetic mean mainly reflects the general level of the population or
the central tendency of the distribution (Plackett, 1958), it cannot re-

flect the existence of critical basic blocks in the path. Therefore, we
use the geometric mean, which is more sensitive to the minimum
value, to calculate the seed distance. For example, in Fig. 3, Trace A
(<𝑏1, 𝑏2, 𝑏3, 𝑏5, 𝑏8, 𝑏10>) is covered by Seed A, Trace B (<𝑏1, 𝑏11,
𝑏13, 𝑏15>) is covered by Seed B, and 𝑏10 and 𝑏14 are the target ba-

sic blocks. Based on the arithmetic mean, the seed distance of Seed
A ((0 + 1 + 2 + 3 + 4 + 3)∕6 = 2.16) is greater than the seed distance of
Seed B ((1 + 2 + 3)∕3 = 2), resulting in Seed B being preferred. How-

ever, since Seed A can reach the target basic block, prioritizing Seed
A is more reasonable. Given using the geometric mean, the seed dis-

tance of Seed A (6
√
0 × 1 × 2 × 3 × 4 × 3 = 0) will be smaller than the

seed distance of Seed B (3
√
1 × 2 × 3 = 1.81). We can see that, in this

example, the geometric mean more accurately reflects the presence of
critical basic blocks than the arithmetic mean. For this reason, we use
the geometric mean to calculate the seed distance.

𝑑𝑠(𝑠, 𝑇𝑏) =

{
0, 𝑖𝑓 𝑑𝑝(𝑚𝑖, 𝑇𝑏) == 0 ∧ 𝑚𝑖 ∈ 𝜉𝑏(𝑠)|𝜉𝑏(𝑠)|√∏

𝑚∈𝜉𝑏(𝑠) 𝑑𝑝(𝑚,𝑇𝑏), 𝑒𝑙𝑠𝑒
(4)

Where 𝑠 denotes the seed, 𝜉𝑏(𝑠) denotes the set of basic blocks in
the execution path of the seed, and |𝜉𝑏(𝑠)| denotes the number of basic
blocks in 𝜉𝑏(𝑠). If there is a basic block 𝑚𝑖 whose BB distance is 0, it
means that the current seed has hit a target basic block. In this case, we
consider its seed distance as 0.

Calculation Simplification. To avoid the high overhead caused by
the Product and Sqrt operations, we combine Equation (3) and Equation
(4) to simplify the calculation of the geometric mean.

𝑑𝑠=
⎧⎪⎨⎪⎩
0, 𝑖𝑓 𝑑𝑝(𝑚𝑖, 𝑇𝑏) == 0 ∧ 𝑚𝑖 ∈ 𝜉𝑏(𝑠)

exp
{∑

𝑚∈𝜉𝑏(𝑠)
(log(𝑑𝑏(𝑚,𝑇𝑏) − 𝑃 (𝑝𝑎𝑡ℎ𝑚))|𝜉𝑏(𝑠)|

}
, 𝑒𝑙𝑠𝑒

(5)

We mainly simplify the second term in Equation (4) based on Equa-

tion (3). First, we take the logarithm of both sides of the equa-

tion in Equation (3) to convert the Product and Sqrt operations into
Summation operations, which yields

∑
𝑚∈𝜉𝑏(𝑠) log(𝑑𝑏(𝑚,𝑇𝑏) ⋅ c−𝑃 (𝑝𝑎𝑡ℎ𝑚)).

Then, to optimize the computation process, we set the constant 𝑐 in
Equation (2) to e, so that we can convert the multiplication oper-

ation in log(𝑑𝑏(𝑚,𝑇𝑏) ⋅ c−𝑃 (𝑝𝑎𝑡ℎ𝑚)) into an addition operation, which
yields

∑
𝑚 ∈ 𝜉𝑏(𝑠)(log(𝑑𝑏(𝑚,𝑇𝑏) − 𝑃 (𝑝𝑎𝑡ℎ𝑚)). Finally, we exponentiate

the equation variables and obtain the optimized formula shown in Equa-

tion (5). Through this simplification method, the forking process only
needs to perform addition operations, greatly reducing the computation
overhead.

3.2. Power schedule optimization

Most of the existing DGF techniques use seed distance as the fit-

ness metric, such as AFLGo and WindRanger, which explicitly divides
the fuzzing process into the exploration phase and exploitation phase.
The exploration phase is designed to uncover as many paths as possible
(like many coverage-guided fuzzers), and DGF in this phase favors seeds
that expose new paths and prioritizes them. Then, based on the known
paths, the exploitation phase is invoked to drive the engine toward the
target code areas. In this phase, DGF prioritizes seeds that are closer to
the targets and assigns more energy to them. However, the constraints
on the closer seeds’ paths may be difficult for DGF to satisfy, leading
to a failure in generating new seeds within the limited time budget.
Therefore, it is challenging to assign reasonable energy for both phases.
With the probability-based distance, we design a Directed Multi-Armed
Bandit (i.e., DMAB) model to optimize the power schedule, which can
5

implicitly coordinate the exploration and exploitation in DGF.
Computers & Security 142 (2024) 103851

The Multi-Armed Bandit (i.e., MAB) problem results from the slot
machine with multiple arms. The player plays one of the arms and ob-

tains a reward. The player’s main goal is maximizing the rewards in
finite trials. Recent works, such as EcoFuzz (Yue et al., 2020) and Mob-

Fuzz (Zhang et al., 2022), have applied the Adversarial MAB model to
improve CGF, where the arms represent the seeds, and the reward repre-

sents the probability of uncovering new paths by mutating a seed. Based
on the Adversarial MAB, EcoFuzz assumes that the probability of uncov-

ering new paths decreases as the coverage of CGF increases. However,
different from CGF, HyperGo measures the difficulty of covering new
branches based on the branch probability of unexplored branches. Since
the branch probabilities are only related to the complexity of condition
constraints, which is a fixed value, we model the process of HyperGo
covering new branches as a Stochastic Multi-Armed Bandit problem.

In the stochastic MAB model, there are N fixed parallel arms, and
at each time step t, one arm indexed as 𝑖, (𝑖 ∈ 𝐾 = 1,2,,𝑁) is se-

lected to play. After playing arm i, the player receives a reward, and
the rewards of each slot machine may follow a fixed probability dis-

tribution. Using the greedy algorithm, we tend to select the arm with
the highest reward. However, to obtain the global optimum, we need
to explore different arms to evaluate their reward probability and se-

lect the arm with the highest reward expectation. In the DMAB model,
we map the elements in DGF to rewards and reward probabilities and
combine them into reward expectations. Compared to traditional DGF
methods, DMAB eliminates the need to explicitly differentiate explo-

ration and exploitation. The assignment of seed energy is determined
based on the difficulty of reaching the target sites for each seed, which
implicitly incorporates the exploration and exploitation requirement.

3.2.1. Elements in DMAB model

We map the elements in DGF to the DMAB model as follows.

Reward. We consider mutating seed 𝑠 as playing the slot machine.
After mutating the seed s, a new input is generated and a reward is
obtained. The value of the reward depends on whether the new input
covers a new branch. There are two possible values for the reward: 0
or a value r(𝑑𝑠) which is negatively related to the seed distance, repre-

sented as 𝑑𝑠. The reward of 0 indicates that the new input cannot cover
a new branch while the reward of r(𝑑𝑠) indicates that the new input
covers a new branch. Based on a large number of tests, we find that
new seeds generated from mutating the seed with shorter distance are
more likely to have shorter distances. Thus, we believe that the reward
is negatively correlated with the seed distance of seed 𝑠. To exploit
the seeds with shorter distances, we prefer the seeds with higher
rewards and assign the seeds more energy.

Reward probability. To estimate the reward expectation, we need
to evaluate the probability distribution of the reward. Whether DGF
can cover new branches is related to whether the input can satisfy the
constraint conditions of unexplored branches in the path. Therefore,
we use the average branch probability of all unexplored branches in
the path of seed s to evaluate the probability of the fuzzer covering
an unexplored branch through mutating seed 𝑠, represented as reward
probability. To explore more paths, we prefer the seeds that have
higher probabilities of covering new branches and assign the seeds
more energy.

Reward expectation. We combine the reward and reward prob-

ability to evaluate the reward expectation. The design of the reward
expectation is:

𝐸(𝑟) = 1
𝑑𝑠(𝑠, 𝑇𝑏)

⋅

∑
𝑏𝑟∈Θ(𝑠) 𝑃 (𝑏𝑟)|Θ(𝑠)| (6)

Where 𝑑𝑠(𝑠, 𝑇𝑏) denotes the seed distance of the seed 𝑠, Θ(𝑠) denotes the
set of unexplored branches in the path of 𝑠, 𝑃 (𝑏𝑟) denotes the branch
probability. The first term in Equation (6) represents the reward, which
is negatively correlated with 𝑑𝑠(𝑠, 𝑇𝑏). The second term represents the
reward probability, which is equal to the average branch probability of

all unexplored branches.

P. Lin, P. Wang, X. Zhou et al.

Based on Equation (6), the DMAB model can dynamically coordinate
the exploitation and exploration. As the fuzzing campaign launches, all
seeds have not been sufficiently mutated and they have similar reward
probabilities. Therefore, the DMAB model will exploit closer seeds with
higher reward expectations. As fuzzing progresses, the closer seeds are
sufficiently fuzzed and their reward probabilities will decrease as the
number of mutations increases. According to Equation (6), the reward
expectation of these closer seeds will gradually become lower than that
of the seeds with higher reward probability. As a result, the DMAB
model will assign more energy to the seeds with higher reward proba-

bilities to explore more new paths, implicitly switching to exploration.

3.2.2. Design of power schedule

After obtaining the reward expectations of all seeds, we optimize the
power schedule based on the reward expectations to coordinate explo-

ration and exploitation in DGF. We design the power schedule for two
objectives. Firstly, the fuzzer should assign more energy to seeds with
higher reward expectations, and less energy to seeds with lower reward
expectations. Secondly, the energy of seeds can be adaptively adjusted
with the progress of fuzzing. Based on these two objectives, we redesign
the power schedule in HyperGo.

Firstly, we normalize the reward expectations of all seeds.

𝐸̃(𝑟) = 𝐸(𝑟) − min𝐸
max𝐸 −min𝐸

(7)

Where min𝐸 denotes the minimum reward expectation among all
seeds, and max𝐸 denotes the maximum reward expectation among
all seeds. Then, we integrate the normalized reward expectations with
AFL’s power schedule to form an optimized power schedule.

𝑃 (𝑠, 𝑇𝑏) =

{
𝑃𝑎𝑓𝑙(𝑠) ⋅ 210⋅𝐸(𝑟)−5, 𝑖𝑓 Θ(𝑠) ≠ ∅

𝑃𝑎𝑓𝑙(𝑠)
32 , 𝑖𝑓 Θ(𝑠)==∅

(8)

Where 𝑃𝑎𝑓𝑙(𝑠) denotes seed energy assigned by AFL’s power schedule,
𝑃 (𝑠, 𝑇𝑏) denotes the finally assigned seed energy after optimization.
AFL’s power schedule assigns basic energy to the seed based on the
seed’s characteristics, such as the seed’s execution speed and the size
of its bitmap. By taking into account both the seed’s characteristics and
the reward expectation, we integrate AFL’s power schedule and reward
expectations to design the optimized power schedule. Moreover, to pre-

vent the overuse of seeds and neglect of seeds that may contribute more
to reaching target sites, we design the term 210⋅𝐸(𝑟)−5 to control the ad-

justment of AFL’s assigned energy within the range of [1/32, 32].

As fuzzing progresses, the number of unexplored branches and
branch probabilities will change. This means that the reward expec-

tations of all seeds will also change constantly. This allows HyperGo to
dynamically assign seed energy and balance the trade-off between ex-

ploration and exploitation in a more accurate way. In Section 5.4, we
demonstrate the effectiveness of the DMAB model in steering DGF to
reach the target sites.

3.3. Optimized symbolic execution complementary scheme

To address the issues of directed hybrid fuzzing mentioned in Sec-

tion 2.1, we design an Optimized Symbolic Execution Complementary
(i.e., OSEC) scheme. In the OSEC scheme, we take three measures: prun-

ing the unreachable branches, pruning the unsolvable branches, and
dynamically prioritizing the symbolic execution of seeds. Algorithm 1

represents the workflow of the OSEC scheme.

In Algorithm 1, Ω𝑠 represents the set of all seeds provided by
DGF. 𝐷 represents a dictionary containing (seed index, seed distance,
average branch probability) triplets. Based on the seed’s index, we can
obtain the seed distance and the average branch probability of all
unexplored branches in the seed’s path (represented as 𝑃 (Θ(𝑠))). 𝜓𝑠
represents the set of all new seeds generated by the symbolic executor,
𝑆𝐴(Θ(𝑠)) represents the average number of solving attempts for unex-
6

plored branches, and 𝜏𝑏𝑟 represents the set of the unexplored branch’s
Computers & Security 142 (2024) 103851

Algorithm 1 The workflow of OSEC scheme.

Input: Ω𝑠 , 𝐷
Output: 𝜓𝑠

1: while 𝑠 ∈Ω𝑠 do

2: 𝑑𝑠, 𝑃 (Θ(𝑠)) ←𝐷(𝑠)
3: Score(s) = Cal_Sco(𝑑𝑠 , 𝑃 (Θ(𝑠)), 𝑆𝐴(Θ(𝑠)))
4: Sort(Ω𝑠)

5: end while

6: while true do

7: s ← Top_Rank(Ω𝑠)

8: Θ(𝑠) ← Sym_Exe(s)

9: while 𝑏𝑟 ∈Θ(𝑠) do

10: if 𝑏𝑟 is unreachable or 𝑏𝑟 is unsolvable then

11: delete 𝑏𝑟 from Θ(𝑠)
12: else

13: 𝑛𝑒𝑤_𝑠𝑒𝑒𝑑 ← Constraint_Solve(𝜏𝑏𝑟)

14: 𝜓𝑠 = 𝜓𝑠 ∪ {𝑛𝑒𝑤_𝑠𝑒𝑒𝑑}
15: end if

16: end while

17: Score(s) = Cal_Sco(𝑑𝑠 , 𝑃 (Θ(𝑠)), 𝑆𝐴(Θ(𝑠)))
18: Sort(Ω𝑠)

19: end while

path constraints. Before the symbolic execution of seeds, the seed’s
𝑃 (Θ(𝑠)) is calculated by DGF based on Equation (6) and the 𝑆𝐴(Θ(𝑠))
is initialized to 1.

Firstly, the OSEC calculates the priority scores based on the seed
distance, the average branch probability, and the average solving at-

tempts. The priority scores are used to sort the seeds in descending
order (Lines 2–5). Then, the OSEC continuously selects the seed with
the highest priority score from Ω𝑠, tracks the execution path of the seed,
and identifies all unexplored branches to form the set Θ(𝑠) (Lines 7–8).
Next, the OSEC determines whether the unexplored branches are un-

solvable or unreachable. If so, the OSEC prunes these branches. If not,
the OSEC invokes the constraint-solver to solve the path constraints of
these branches to generate new seeds. The new seeds are added to the
set of new seeds 𝜓𝑠 (Lines 9–16). After the symbolic execution of the
seed, the value of 𝑑𝑠, 𝑃𝑏𝑟(Θ(𝑠)), and 𝑆𝐴(Θ(𝑠)) will all change. There-

fore, we recalculate the priority score of the seed and re-sort all seeds
(Lines 17–18). In the following sections, we will introduce in detail how
to prune branches and calculate seed priority scores.

3.3.1. Pruning the unreachable branches

To avoid solving path constraints of the branches that do not con-

tribute to reaching the target sites (i.e., unreachable branches), we need
to prune the unreachable branches. We determine whether an unex-

plored branch is an unreachable branch based on the reachability of its
destination basic block. We assume that if the destination basic block
of a branch is unreachable, all successor basic blocks of that destination
basic block are also unreachable. Thus, we consider this branch as an
unreachable branch and give up solving its path constraints.

To determine whether an unexplored branch, represented as

<𝑚𝑠, 𝑚𝑑>, is unreachable, the OSEC loads the mappings of basic block
addresses and BB distances (<𝐵𝐵_𝑎𝑑𝑑, 𝐵𝐵_𝑑𝑖𝑠>) provided by the static
analyzer to obtain the BB distances of all basic blocks. Then, the OSEC
checks the BB distance of 𝑚𝑑 (whether 𝑑𝑏(𝑚𝑑, 𝑇𝑏) ≥ 0) to determine the
reachability of branch <𝑚𝑠, 𝑚𝑑>. If branch <𝑚𝑠, 𝑚𝑑> is unreachable,
the symbolic executor will abandon solving this branch and prune it
from the set of unexplored branches.

3.3.2. Pruning the unsolvable branches

To alleviate the issue of solving path constraints for the branches
that cannot be solved (i.e., unsolvable branches) within a limited time
budget, we need to prune the unsolvable branches. When solving the
path constraints of a branch, we make two basic assumptions. (1) The
time budget for solving the path constraints of each branch has a lower

bound (e.g., 5 s) and an upper bound (e.g., 15 min). The time budget in-

P. Lin, P. Wang, X. Zhou et al.

creases with the number of solving attempts, up to the upper limit. (2)
If the symbolic executor fails to solve a branch due to the complexity
of the branch’s path constraints, all subsequent branches of that unsolv-

able branch are also unsolvable since they have more path constraints
than the unsolvable branch.

Based on these two assumptions, we can prune the unsolvable
branches. Firstly, we dynamically adjust the time budget within the
ranger of [𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑, 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑] according to the solving attempts.
Based on empirical experience, we increase the time budget by 1 minute
after each attempt. If the branch cannot be solved within the upper limit
time budget, we consider it as an unsolvable branch and give up solv-

ing it. Secondly, during the symbolic execution of a seed, we would
record the solving results (e.g., success or failure) of the unexplored
branches that have been identified. Then, before solving each branch,
we check whether its predecessor branch is unsolvable. If unsolvable,
based on the second assumption, the path constraints of this branch are
too complicated for the symbolic executor to solve within the limited
time budget, and thus the branch is regarded as an unsolvable branch.
Through these two steps, we prune the unsolvable branches to alleviate
the pressure of constraint solving.

3.3.3. Prioritizing the symbolic execution of seeds

To achieve a complementary integration of DGF and SE, we need
to dynamically adjust the order of seeds for symbolic execution. Due
to its high fuzzing throughput, DGF can quickly cover paths with easy-

to-satisfy path constraints. In contrast, SE has the excellent constraint-

solving ability to generate inputs that satisfy complex path constraints.
To fully leverage the respective strengths of DGF and SE, we want (1)
both SE and DGF to prioritize seeds with shorter seed distances, (2) SE
to prioritize solving unexplored branches that are difficult for DGF to
cover, and (3) SE to prioritize seeds with fewer solving attempts and
lower time budgets. We calculate the priority scores of different seeds
based on these three considerations and adjust the order of seeds for
symbolic execution accordingly.

Firstly, similar to the method of evaluating reward probability in
Section 3.2, we use the branch probability of unexplored branches to
evaluate the difficulty of the fuzzer covering the unexplored branches
through mutating seed 𝑠.

𝐸𝐷𝐹 (𝑠) =
∑
𝑏𝑟∈Θ(𝑠) 𝑃 (𝑏𝑟)|Θ(𝑠)| (9)

Where 𝐸𝐷𝐹 (𝑠) denotes the estimated difficulty. Similarly, we use the
average branch probability of all unexplored branches in the path of
seed 𝑠 as the estimated difficulty. Moreover, based on the branch prob-

ability calculation method in Section 3.1, the branch probabilities of
unexplored branches are all greater than 0.

Then, we evaluate the solving difficulty of branches based on the
number of solving attempts. That is, more solving attempts indicate that
the symbolic executor has more difficulty in solving the path constraints
of the branch. We use the average solving attempts of all unexplored
branches in the path of seed 𝑠 to evaluate the solving difficulty of the
seed’s branches.

𝐸𝐷𝑆(𝑠) =
∑
𝑏𝑟∈Θ(𝑠) 𝑆𝐴(𝑏𝑟)|Θ(𝑠)| (10)

Where EDS(s) denotes the estimated difficulty, 𝑆𝐴(𝑏𝑟) denotes the num-

ber of solving attempts of the unexplored branch.

Based on 𝐸𝐷𝐹 (𝑠), 𝐸𝐷𝑆(𝑠), and 𝑑𝑠(𝑠, 𝑇𝑏), we score the seeds to de-

termine their order for symbolic execution. To ensure that the three
indicators have the same weight in affecting the priority score of seeds,
we use a normalization method as shown in Equation (7) to calculate
their normalized value. Then, we can calculate the priority score of dif-

ferent seeds.

𝐸𝐷𝐹 (𝑠)
7

𝑆𝑐𝑜𝑟𝑒(𝑠) =
𝐸𝐷𝑆(𝑠) ⋅ 𝑑𝑠(𝑠, 𝑇𝑏)

(11)
Computers & Security 142 (2024) 103851

Where 𝐸𝐷𝐹 (𝑠), 𝐸𝐷𝑆(𝑠) and 𝑑(𝑠, 𝑇𝑏) are the normalized value. After
obtaining the priority scores of all seeds, the OSEC scheme will pri-

oritize the seeds with higher scores for symbolic execution. Moreover,
since the three factors used to calculate the priority scores, 𝐸𝐷𝐹 (𝑠),
𝐸𝐷𝑆(𝑠), and 𝑑(𝑠, 𝑇𝑏), are changing dynamically, the OSEC scheme
will adaptively adjust the order of symbolic execution of the seeds.
By this method, the OSEC scheme dynamically prioritizes the optimal
seeds whose unexplored branches are hard for the fuzzer to penetrate
through, are more likely to be solved by the symbolic executor, and are
closer to targets.

During the symbolic execution, the symbolic executor will con-

stantly attempt to solve the unexplored branches in the seeds’ paths
and generate new interesting seeds for DGF.

4. Implementation

The implementation of HyperGo mainly consists of three compo-

nents: a static analyzer, a fuzzer, and a symbolic executor. For the static
analyzer, we leverage the static analysis framework LLVM 11.0 and
Clang 11.0 and use the LLVM IR to instrument the program. The fuzzer
is built on AFL 2.52b, and the symbolic executor is built on Symcc. The
implementation part of HyperGo is implemented with about 2000 lines
of C/C++ and RUST code. HyperGo is publicly available on our website
(https://gitee .com /paynelin /hypergo).

5. Evaluation

To evaluate the effectiveness of HyperGo, we conducted experiments
aiming to answer five research questions:

RQ1: What about the performance of HyperGo in terms of reaching the
target sites?

RQ2: What about the performance of HyperGo in terms of exposing the
vulnerabilities in the target sites?

RQ3: How probability-based distance, the DMAB model, and the OSEC
scheme take effect in the overall performance of HyperGo?

RQ4: Is the probability-based fitness metric effective in finding better
seeds for directed fuzzing?

RQ5: What about the performance of HyperGo in terms of discovering
new vulnerabilities?

5.1. Evaluation setup

Evaluation Criteria. We mainly use two types of criteria to evaluate
the performance of different fuzzing techniques.

(1) Time-to-Reach (TTR) is used to evaluate the time spent on gen-

erating the first input which can reach the specific target site.

(2) Time-to-Expose (TTE) is used to evaluate the time spent on ex-

posing the (known or undisclosed) vulnerabilities in the target sites.
When a crash is observed at the target site, it indicates that the fuzzer
has successfully exposed the vulnerability.

Evaluation Benchmarks. We selected two datasets and 7 real-

world programs with potential vulnerabilities.

(1) UniBench (Li et al., 2021) provides real-world programs of dif-

ferent types and the corresponding seed corpus. The state-of-the-art
fuzzing techniques, such as WindRanger, have used the UniBench as the
benchmark for testing. To answer RQ1, RQ3, RQ4, and RQ5, we tested
the 20 programs from UniBench and used AFL++ (Fioraldi et al., 2020)
to select target sites from each program by conducting preliminary ex-

periments. We first ran AFL++ for 48 hours and collected all the seeds
generated by AFL++. Then, we use afl-cov to re-run these seeds, so that
we can obtain the code locations covered and the time when they are
covered, represented as pairs like (line, time). Finally, among the loca-

tions that are reached using from 1 hour to 48 hours (i.e., more than 1

hour), we randomly selected 4 code locations as the targets.

https://gitee.com/paynelin/hypergo

Computers & Security 142 (2024) 103851P. Lin, P. Wang, X. Zhou et al.

Fig. 4. TTR of AFLGo, AFLGoSy, BEACON, WindRanger, ParmeSan, and HyperGo on the UniBench.
(2) AFLGo testsuite (Böhme, 2023) was proposed in AFLGo’s paper
and website to evaluate the directness of DGF, and it had been used as
a benchmark by many state-of-the-art directed fuzzers (e.g., Hawkeye
and WindRanger). To answer RQ2, we selected it as the benchmark.

(3) Additional real-world programs. In addition to UniBench, we
add another 9 real-world programs to construct a new testbench (all
the programs are listed in Table 4). To answer RQ4, we used sanitizers
(e.g., UBSAN (Undefined behavior sanitizer, 2023), ASAN (Serebryany
et al., 2012)) to label the target sites for the testbench and tested them
with HyperGo.

Baselines. In our evaluation, we compared HyperGo with the state-

of-the-art directed greybox fuzzers that are publicly available by the
time of writing this paper, including WindRanger, BEACON, Parme-

San, and AFLGo. To conduct the incremental experiments, we combined
AFLGo with SymCC to form a new directed hybrid fuzzer, which is
called AFLGoSy, as the baseline.

Experiment Settings. We conducted the experiments on the ma-

chine equipped with Intel(R) Xeon(R) Gold 6133 CPU @ 2.50 GHz with
80 cores and used Ubuntu 20.04 LTS as the operating system. All the
experiments were repeated 5 times within a time budget of 24 hours.
When testing the programs we used the seeds in the BenchMarks’ rec-

ommended seed corpus as initial seeds. Given that HyperGo requires
two CPU cores to simultaneously launch both fuzzing and symbolic ex-

ecution instances, the compared fuzzers also employed parallel fuzzing
by launching two fuzzing instances (one acting as the master instance
and the other as the slave instance). For experimental results analysis,
we utilize the Mann-Whitney U test (p-value) to measure the statistical
significance and the Vargha-Delaney statistic (𝐴̂12) (Auer et al., 2002)
to measure the probability of one technique performing better than an-

other. For experimental results analysis, we utilize the Mann-Whitney
U test (p-value) to measure the statistical significance and the Vargha-

Delaney statistic (𝐴̂12) (Auer et al., 2002) to measure the probability of
one technique performing better than another.

5.2. Reaching target sites

To answer RQ1, we tested programs from UniBench, with a total
of 100 target sites, and evaluated the TTR of different fuzzers. We
set the timeout threshold as 24 hours. The detailed results of TTR are
listed in Table 2. In Table 2, the entry “N/A” indicates that the fuzzer
failed to compile the program due to code issues, while “T.O.” indicates
that the fuzzer couldn’t reach the target site within the allocated 24-

hour time budget. For WindRanger, some entries are marked as “N/A”
due to encountering segmentation fault errors or being unable to ob-

tain distance information during program testing. As for BEACON and
ParmeSan, most entries showing “N/A” might be because it is incompat-

ible with UniBench. For “N/A” entries, we did not use them to calculate
the speedups and p-values. As for the “T.O.” entries, we believe that
8

these fuzzers might still reach the targets in subsequent fuzzing pro-
cesses. Therefore, we opted for a slightly larger value of 1500 minutes
to calculate speedups and p-values.

According to the results of TTR, HyperGo can reach the most
(95/100) target sites compared to AFLGo (28/100), AFLGoSy (38/100),
BEACON (14/100), WindRanger (25/100), and ParmeSan (11/100)
within the time budget. Moreover, on most of the target sites (89/100),
HyperGo outperforms all other fuzzers and achieves the shortest TTRs.
In terms of mean TTR of reaching the target sites, HyperGo demon-

strates 37.75×, 29.11×, 23.34×, 95.61× and 143.22× speedup com-

pared to AFLGo, AFLGoSy, BEACON, WindRanger, and ParmeSan, re-

spectively. We conducted both the Mann-Whitney U test (p-value) and
the Vargha-Delaney test (𝐴̂12), all the p-values are less than 0.01, and
the mean 𝐴̂12 against AFLGo, AFLGoSy, BEACON, WindRanger, and
ParmeSan are 0.88, 0.85, 0.92, 0.86, and 0.91, respectively. Based on
the above analysis, we can conclude that HyperGo can reach the tar-

get sites faster than baseline fuzzers.

To reflect the results in a straight way, we use bar charts to vi-

sualize the results. In Fig. 4, the x-axis represents the target site ID
(1-100), the y-axis represents the total TTR of all fuzzers in minutes,
and a shorter bar indicates a shorter TTR. Since some fuzzers cannot
compile some programs or reach the target sites within the 24-hour
time budget, resulting no TTR. To distinguish these cases, the TTR of
such a case is represented as 1500 minutes in Fig. 4. From the figure, we
can clearly see that the blue bars are much shorter than the other bars,
which means that HyperGo can reach most of the target sites faster than
the baseline fuzzers.

5.3. Exposing vulnerabilities

To answer RQ2, following BEACON and WindRanger, we used the
AFLGo testsuite and set the known vulnerabilities with CVE IDs in the
programs as the target sites. The information on target sites and the TTE
results are presented in Table 1. As Table 1 shows, among the 20 vul-

nerabilities, HyperGo exposed the most (18) compared to AFLGo (14),
AFLGoSy (15), BEACON (13), WindRanger (16), and ParmeSan (14).
Besides, on most of the target sites (15/20), HyperGo outperformed all
the baseline fuzzers and achieved the shortest TTE. Among the 20 vul-

nerabilities, HyperGo costs longer time than baselines for three CVEs
(2016-4487, 2016-4490, and 2015-8540). The three CVEs are swiftly
discovered by all fuzzers within a few minutes of launching the fuzzing
campaign. During this initial period, the branch hits for all branches are
insufficient to accurately assess branch probabilities and calculate path
probabilities. Consequently, in some instances during these first few
minutes, there is a possibility of the fuzzer and symbolic executor incor-

rectly prioritizing branches. However, as the fuzzing process continues
and the branch hits increase, HyperGo would address this issue and per-

form better than the baseline fuzzers in exposing the deeper bugs. With
respect to the mean TTE of exposing vulnerabilities, HyperGo demon-
strated 3.44×, 3.63×, 4.10×, 3.26× and 3.00× speedup compared to

Computers & Security 142 (2024) 103851P. Lin, P. Wang, X. Zhou et al.

Table 1

The results of TTE on AFLGo testsuite.

Prog. CVE-ID AFLG AFLS BEAC Wind Parm HyGo

binutils2.26

2016-4487 2.33m 2.42m 0.63m 1.21m 0.95m 1.42m

2016-4488 4.23m 3.60m 32.1m 3.32m 2.62m 2.12m

2016-4489 3.36m 4.11m 2.98m 5.88m 2.31m 1.89m

2016-4490 1.15m 1.81m 2.35m 2.63m 0.82m 1.68m

2016-4491 448m 389m 258m 298m 212m 69.3m

2016-4492 10.8m 13.2m 43.6m 7.47m 4.33m 3.94m

2016-6131 348m 236m 292m 318m 244m 101m

libming4.48

2018-8807 331m 218m 267m 171m 301m 68.3m

2018-8962 234m 271m 163m 121m 198m 43.7m

2018-11095 T.O. 914m 252m 1311m T.O. 118m

2018-11225 T.O. T.O. 438m 996m T.O. 202m

LibPNG1.5.1

2011-2501 10.2m 12.3m N/A 7.81m 4.53m 2.16m

2011-3328 69.1m 54.3m N/A 49.3m 193m 21.1m

2015-8540 0.88m 1.19m N/A 0.96m 3.41m 2.65m

xmllint2.9.4

2017-9047 T.O. T.O. T.O. T.O. T.O. 983m

2017-9048 T.O. T.O. T.O. T.O. T.O. T.O.

2017-9049 T.O. T.O. T.O. T.O. T.O. 635m

2017-9050 T.O. T.O. T.O. T.O. T.O. T.O.

Lrzip0.631
2017-8846 348m 284m 156m 223m 466m 69.4m

2018-11496 201m 226m 98.1m 169m 126m 33.9m

speedup 3.44× 3.63× 4.10× 3.26× 3.00× -

mean 𝐴̂12 0.84 0.82 0.79 0.76 0.80 -

mean p-values 0.009 0.013 0.006 0.026 0.008 -

Sy,
Fig. 5. Incremental experiment results of AFLGo

AFLGo, AFLGoSy, BEACON, WindRanger, and ParmeSan, respectively.
All p-values were less than 0.05, and the mean 𝐴̂12 against AFLGo,
AFLGoSy, BEACON, WindRanger, and ParmeSan were 0.84, 0.82, 0.79,
0.76, and 0.80, respectively. Based on the above analysis, we can con-

clude that HyperGo can expose known vulnerabilities faster than
the baseline fuzzers.

5.4. The impact of the optimizations on the overall performance

To answer RQ3, we conducted incremental experiments to evalu-

ate the effects of the three optimizations on HyperGo’s overall perfor-

mance. We use AFLGoSy as the base tool. Since the DMAB model and
OSEC scheme are based on the probability-based distance, disabling
the probability-based distance calculation module will disable the other
modules. Thus, we first add the probability-based distance module to
AFLGoSy to implement a new tool (i.e., Only-PB). Then, we add the
DMAB model to Only-PB, forming a new tool (i.e., PB+DMAB). Finally,
we add the OSEC scheme to PB+DMAB to form HyperGo. In the in-

cremental experiment, the configurations and the target sites remain
unchanged as Section 5.2.

According to the TTR results, Only-PB (41), PB+DMAB (46), and
9

HyperGo (95) can all reach more target sites than AFLGoSy (38).
Only-PB, PB+DMAB, and HyperGo using TTR.

Moreover, HyperGo outperforms AFLGoSy, Only-PB, and PB+DMAB
by 33.79×, 23.01×, and 14.78× respectively in the average TTR of
reaching the target sites. Detailed results are listed in Table 2. These
results demonstrate that each optimization has a significant impact
on reducing TTR, and using one or two optimization strategies
(Only-PB and PB+DMAB) are far less effective than using all three
optimization strategies simultaneously (HyperGo). To visualize the
experimental results, the results of TTR are shown in Fig. 5, in which
the x-axis represents the target site ID (1-100), and the y-axis represents
the total TTR of all fuzzers in minutes.

5.5. Intermediate data analysis

To demonstrate that HyperGo is more accurate than static-based
DGF techniques and to more intuitively illustrate the effects of differ-

ent optimizations, we analyzed the intermediate experimental data and
used three metrics for analysis:

(1) The number of reachable seeds generated by the fuzzers, i.e.,

Rseeds. Through Rseeds, we can observe whether a fuzzer can

cover more paths leading to target sites, thereby reflecting a

Computers & Security 142 (2024) 103851P. Lin, P. Wang, X. Zhou et al.

Table 2

The TTR results on programs from UniBench.

No Prog Version Target sites AFLGo AFLGoSy BEACON WindRanger ParmeSan Only-PB PB+DMAB HyperGo

1

cflow 1.6

parser.c:281 T.O. T.O. 99.4m 61.1m T.O. 311m 224m 51.8m

2 c.c:1783 12.8m 9.43m 22.1m 6.45m 10.1m 8.41m 7.09m 8.82m

3 parser.c:105 0.82m 1.21m 13.5m 0.93m 0.44m 2.37m 2.88m 1.68m

4 parser.c:1223 1.22m 1.66m 0.83m 2.44m 6.23m 2.44m 7.21m 10.8m

5 parser.c:108 12.8m 8.63m 68.1m 8.32m 6.76m 4.33m 2.69m 1.65m

6

mp42aac Bento4 1.5.1-628

Ap4AvccAtom.cpp:82 T.O. T.O. N/A T.O. N/A T.O. T.O. 1124m

7 Ap4TrunAtom.cpp:139 T.O. T.O. N/A T.O. N/A T.O. T.O. 223m

8 Ap4SbgpAtom.cpp:81 T.O. T.O. N/A T.O. N/A T.O. T.O. 781m

9 Ap4TfdtAtom.cpp:71 T.O. 985m N/A T.O. N/A 304m 287m 166m

10 Ap4AtomFactory.cpp:490 T.O. 1324m N/A T.O. N/A 1318m 1311m 215m

11

jhead 3.00

exif.c:1339 T.O. T.O. N/A T.O. T.O. T.O. T.O. 5.52m

12 exif.c:1327 T.O. T.O. N/A T.O. T.O. T.O. T.O. 2.74m

13 iptc.c:143 T.O. T.O. N/A T.O. T.O. T.O. T.O. 107m

14 iptc.c:91 T.O. T.O. N/A T.O. T.O. T.O. 771m 20.8m

15 makernote.c:174 T.O. 1102m N/A T.O. T.O. 417m 349m 11.3m

16

mp3gain 1.5.2

layer3.c:1116 1142m 841m N/A 984m N/A 262m 229m 10.84m

17 interface.c:690 1098m 81.9m N/A 324m N/A 67.6m 61.1 9.02m

18 mp3gain.c:602 T.O. T.O. N/A T.O. N/A T.O. 771m 119m

19 interface.c:663 T.O. T.O. N/A T.O. N/A T.O. T.O. 12.8m

20 apetag.c:341 290m 132m N/A 91.2m N/A 132m 67.4m 11.8m

21

lame 3.99.5

bitstream.c:823 T.O. T.O. N/A T.O. N/A T.O. T.O. 36.8m

22 lame.c:2148 T.O. T.O. N/A T.O. N/A T.O. T.O. 8.73m

23 uantize_pvt.c:441 T.O. T.O. N/A 1269m N/A T.O. T.O. 354m

24 VbrTag.c:778 26.5 m 1.42m N/A 39.1m N/A 1.40m 1.41m 2.96m

25 get_audio.c:1605 T.O. T.O. N/A T.O. N/A T.O. T.O. 11.5m

26

imginfo jasper 2.0.12

jp2_cod.c:841 T.O. T.O. N/A T.O. T.O. T.O. T.O. 451m

27 jpc_dec.c:1393 T.O. 89.1m N/A 653m T.O. 39.0m 33.1m 0.35m

28 jp2_cod.c:636 T.O. T.O. N/A T.O. T.O. T.O. T.O. 314m

29 jas_stream.c:823 T.O. 1123m N/A T.O. T.O. 1101m 1088m 0.71m

30 jpc_dec.c:1393 T.O. 121m N/A T.O. 984m 26.8m 23.0m 0.81m

31

gdk-pixbuf-pixdata gdk-pixbuf 2.31.1

gdk-pixbuf-loader.c:387 T.O. T.O. T.O. T.O. N/A T.O. T.O. 1339m

32 io-qtif.c:511 T.O. T.O. T.O. T.O. N/A T.O. T.O. 841m

33 io-ani.c:403 T.O. T.O. T.O. T.O. N/A T.O. T.O. 72.3m

34 io-jpeg.c:691 T.O. T.O. T.O. T.O. N/A T.O. T.O. 68.6m

35 io-tga.c:360 126m 111m T.O. T.O. N/A 106m 74.1m 60.7m

36

jq 1.5

jv_dtoa.c:3122 T.O. T.O. T.O. N/A T.O. T.O. 1241m 1223m

37 jv_dtoa.c:2004 T.O. T.O. T.O. N/A T.O. T.O. T.O. 1163m

38 jv_dtoa.c:2518 T.O. T.O. T.O. N/A T.O. T.O. T.O. 875m

39 jv_unicode.c:42 T.O. T.O. T.O. N/A T.O. T.O. T.O. 864m

40 jv_dtoa.c:3044 T.O. T.O. T.O. N/A T.O. T.O. 929m 37.1m

41

tcpdump 4.8.1

print-aodv.c:259 T.O. T.O. N/A 843m T.O. T.O. T.O. 124m

42 print-ntp.c:412 1436m 1311m N/A 974m 1239m 801m 383m 33.7m

43 print-rsvp.c:1252 T.O. T.O. N/A T.O. 889m T.O. T.O. 194m

44 print-snmp.c:607 359m 412m N/A 192m 992m 124m 992m 11.2m

45 print-l2tp.c:606 T.O. T.O. N/A T.O. T.O. T.O. T.O. 526m

46

tic ncurses 6.1

captoinfo.c:189 T.O. T.O. N/A N/A T.O. T.O. T.O. 15.1m

47 alloc_entry.c:141 T.O. T.O. N/A N/A T.O. T.O. T.O. 19.1m

48 name_match.c:111 1186m 866m N/A N/A T.O. 623m 86.6m 19.5m

49 comp_scan.c:860 264m 49.3m N/A N/A 168m 14.3m 7.24m 1.10m

50 entries.c:78 1038m 1134m N/A N/A 883m 824m 336m 19.9m

51

flvmeta 1.2.1

json.c:1036 T.O. T.O. N/A T.O. T.O. T.O. T.O. 10.1m

52 avc.c:1023 T.O. T.O. N/A T.O. T.O. T.O. T.O. 12.9m

53 api.c:718 T.O. T.O. N/A T.O. T.O. T.O. T.O. 50.1m

54 flvmeta.c:1023 T.O. T.O. N/A T.O. T.O. T.O. T.O. 60.6m

55 check.c:769 T.O. T.O. N/A T.O. T.O. T.O. T.O. 74.7m

56

tiffsplit libtiff 3.9.7

tif_ojpeg.c:1277 T.O. 188m N/A T.O. N/A 79.7m 60.4m 7.41m

57 tif_read.c:335 T.O. T.O. N/A T.O. N/A T.O. T.O. 1321m

58 tif_jbig.c:277 T.O. T.O. N/A T.O. N/A T.O. T.O. 967m

59 tif_dirread.c:1977 T.O. T.O. N/A T.O. N/A T.O. T.O. 388m

60 tif_strip.c:154 1328m 1139m N/A T.O. N/A 926m 796m 8.73m

61

nm binutils-5279478

tekhex.c:325 T.O. T.O. 364m 798m N/A T.O. T.O. 78.4m

62 elf.c:8793 T.O. T.O. 986m T.O. N/A T.O. T.O. 102m

63 dwarf2.c:2378 1313m 868m 831m 1065m N/A 553m 512m 357m

64 dwarf1.c:281 T.O. 268m 98m T.O. N/A 241m 233m 187m

65 elf-properties.c:51 T.O. T.O. T.O. T.O. N/A T.O. T.O. 853m
10

Computers & Security 142 (2024) 103851P. Lin, P. Wang, X. Zhou et al.

Table 2 (continued)

No Prog Version Target sites AFLGo AFLGoSy BEACON WindRanger ParmeSan Only-PB PB+DMAB HyperGo

66

pdftotext 4.00

XRef.cc:645 T.O. T.O. N/A T.O. N/A T.O. T.O. 201m

67 Stream.cc:2658 T.O. T.O. N/A T.O. N/A T.O. T.O. 201m

68 GfxFont.cc:1337 1345m 1223m N/A T.O. N/A 1208m 579m 17.5m

69 Stream.cc:1004 725m 824m N/A T.O. N/A 631m 330m 207m

70 GfxFont.cc:1643 637m 514m N/A T.O. N/A 477m 586m 1004m

71

sqlite3 SQLite 3.8.9

pager.c:5017 617m 436m N/A N/A 1214m 196m 174m 44.1m

72 select.c:4301 T.O. T.O. 367m N/A T.O. T.O. T.O. 2.55m

73 func.c:1029 T.O. T.O. T.O. N/A T.O. T.O. T.O. 896m

74 insert.c:1498 T.O. T.O. T.O. N/A T.O. T.O. T.O. 857m

75 vdbe.c:1984 T.O. T.O. 89.6m N/A T.O. T.O. T.O. 0.90m

76

exiv2 0.26

tiffcomposite.cpp:82 73.1m 59.3m N/A 68.1m N/A 26.0m 27.6m 1.90m

77 XMPMeta-Parse.cpp:1037 126m 78.1m N/A 168m N/A 72.9m 60.5m 21.8m

78 XMPMeta-Parse.cpp:847 37.5m 13.4m N/A 21.4m N/A 16.2m 14.3m 39.8m

79 tiffvisitor.cpp:1044 102m 111m N/A T.O. N/A 109m 93.8m 39.5m

80 XMPMeta-Parse.cpp:896 86.7m 78.4m N/A 421m N/A 95.3m 57.2m 1.72m

81

objdump binutils-2.28

elf.c:9509 T.O. T.O. 782m T.O. T.O. T.O. T.O. 78.4m

82 section.c:936 T.O. T.O. T.O. T.O. T.O. T.O. T.O. 862m

83 bfd.c:1108 T.O. 983m 361m 1288m T.O. 812m 621m 423m

84 bfdio.c:262 T.O. T.O. 1123m T.O. T.O. 1011m 833m 712m

85 stabs.c:372 T.O. T.O. T.O. T.O. T.O. T.O. T.O. T.O.

86

ffmpeg 4.0.1

rawdec.c:268 T.O. T.O. N/A N/A N/A T.O. T.O. 286m

87 decode.c:557 T.O. T.O. N/A N/A N/A T.O. T.O. 369m

88 dump.c:632 T.O. T.O. N/A N/A N/A 836m 411m 139m

89 utils.c T.O. T.O. N/A N/A N/A T.O. T.O. 863m

90 eatgv.c:274 T.O. T.O. N/A N/A N/A T.O. T.O. 1021m

91

mujs 1.0.2

jsrun.c:572 T.O. T.O. N/A T.O. N/A T.O. T.O. T.O.

92 jsgc.c:47 T.O. T.O. N/A T.O. N/A T.O. T.O. T.O.

93 jsdump.c:292 T.O. T.O. N/A T.O. N/A T.O. T.O. 652m

94 jsvalue.c:362 T.O. T.O. N/A T.O. N/A 1013m 736m 539m

95 jsvalue.c:396 T.O. 1165m N/A 968m N/A 761m 561m 523m

96

swftools 0.9.2

initcode.c:242 324m 301m N/A 223m N/A 241m 131m 89.3m

97 png.c:410 871m 769m N/A 681m N/A 617m 433m 364m

98 poly.c:137 T.O. T.O. N/A T.O. N/A T.O. T.O. T.O.

99 jpeg2swf.c:257 677m 632m N/A 541m N/A 541m 484m 355m

100 swfc.c:1794 T.O. T.O. N/A T.O. N/A T.O. T.O. T.O.

speedup 37.75× 29.11× 23.34× 95.61× 143.22× 23.01× 14.80× -

mean 𝐴̂12 0.88 0.85 0.92 0.86 0.91 0.82 0.79 -

mean p-values 0.002 0.008 0.008 0.003 0.001 0.009 0.012 -

* T.O. means that the fuzzers cannot reach target sites within 24 hours and N/A means that the fuzzer cannot successfully test the programs.

Table 3

Intermediate data analysis using different seeds.

AFLGo BEAC Wind Parm AFSy On-PB PB+DM HyperGo

RSeeds 2311 312 2532 1463 2479 5112 7313 12432

PRseeds 52.4% 79.8% 64% 43.8% 46.3% 63.1% 69.3% 78.2%

SRseeds - - - - 18 22 29 267
fuzzer’s accuracy in analyzing path reachability and the capabil-

ity of satisfying path constraints.

(2) The proportion of reachable seeds (i.e., PRseed) among all seeds.
If the number and proportion of reachable seeds are higher, it in-

dicates that the fuzzer can avoid spending time on infeasible and
unreachable paths.

(3) The number of reachable seeds generated by the symbolic executor,
i.e., SRseeds. The more SRseeds indicate that the symbolic execu-

tor can provide more assistance to the fuzzer to cover new paths.

We evaluated the fuzzers on the programs from UniBench and
counted the number of these three seed types, which are presented
in Table 3. From Table 3, we can draw two conclusions. Firstly, Hy-

perGo can more accurately and efficiently explore more reachable
and feasible paths to the target sites compared with other directed
greybox fuzzers. By comparing the Rseeds of all fuzzers, we can see
11

that HyperGo can generate more reachable seeds within the same time
budget. Although BEACON has higher PRseeds, it has the lowest Rseeds
among all fuzzers due to wrongly pruning some reachable paths. The
inaccuracy of static analysis prevents BEACON from exploring more
reachable paths to the target sites. Apart from BEACON, HyperGo has
the highest PRseeds among all fuzzers. Secondly, the performance of
HyperGo, which uses all three optimizations, is significantly better
than that of the fuzzers using only one (Only-PB) or two strategies
(PB+DMAB). For the average number of RSeeds, both Only-PB (5112)
and PB+DMAB (7313) are much greater than that of AFLGoSy (2479).
This indicates that the probability-based distance and DMAB model can
effectively explore more reachable paths to the target sites. As for the
SRseeds, those of HyperGo are much greater than those of other fuzzers.
This indicates that the OSEC scheme significantly improved the effi-

ciency of symbolic execution, which helped and tested code areas that
are difficult for the fuzzer to reach. Furthermore, according to the num-

ber of all three seed types, we can see that the performance of HyperGo,

which uses all three optimizations, is significantly better than that of the

Computers & Security 142 (2024) 103851P. Lin, P. Wang, X. Zhou et al.

Fig. 6. Branch probability distribution of HyperGo and AFLGoSy.
fuzzers using only one or two strategies. This implies that the overall
design of HyperGo, including the new fitness metric, optimized power
schedule, and the OSEC scheme, works in a complementary way and
achieves significant improvement.

5.6. Branch probability distribution analysis of the unexplored branches

In the incremental experiments and intermediate data analysis, we
observe that HyperGo can reach target sites faster than AFLGoSy and
explore more paths leading to target sites. To verify whether the seeds
preferentially selected by HyperGo using probability-based optimiza-

tions are better than those non-probability tools (RQ4), we analyze the
high-priority seeds generated by HyperGo and AFLGoSy when testing
UniBench. First, we divide the fuzzing process into 24 intervals, and
each lasts for one hour. At each time point, such as 1-hour, we collect
the top 100 seeds with the highest priority from the programs under
test. Hence, at each time point, we collect 1600 seeds with the highest
priority from the programs of UniBench. Then, we analyze the proba-

bility distribution of the seeds’ unexplored branches.

The results are shown in Fig. 6, which includes two subfigures, de-

picting the unexplored branch probability distribution for HyperGo and
AFLGoSy, respectively. For each subfigure, the x-axis represents the in-

dex of unexplored branches, the y-axis represents different time points,
and the z-axis represents the branch probability. Each point (x, y, z) on
the coordinate axis represents the branch probability of the 𝑥𝑡ℎ unex-

plored branch at 𝑦𝑡ℎ time point. Both Fig. 6(a) and Fig. 6(b) contain
24 branch probability distribution curves, corresponding to the 24 time
points. To better illustrate the results, we sorted all branch probabili-

ties and placed unexplored branches with higher probabilities closer to
the middle. Then, to better visualize the overall branch probability, we
performed curve fitting on all branch probabilities, resulting in a curve
resembling a Gaussian distribution. We can obtain the maximum branch
probability of different time points by identifying the highest point in
the middle of the curve, and we can evaluate the overall branches’ prob-

abilities according to the overall height of the curve.

From Fig. 6, we can observe that the height of the AFLGoSy and
HyperGo curves decreases gradually with the increasing of time, in-

dicating the branch probability of all unexplored branches decreases
during the fuzzing process. This is because the fuzzer is getting dif-

ficult to satisfy the branch conditions of unexplored branches as the
fuzzing iterations increase. Furthermore, it is noteworthy that Hyper-

Go’s unexplored branches generally exhibit higher branch probabilities
than AFLGoSy’s. This indicates that the overall seed quality of Hy-

perGo is better than that of AFLGoSy, making HyperGo can explore
more paths toward target sites. This can be attributed to HyperGo’s
probability-based optimizations, which prioritize seeds that are more
likely to cover unexplored branches as compared to AFLGoSy. Hence,
12

we can conclude that the probability-based fitness metric employed
1 static gboolean gdk_pixbuf__pcx_load_increment{

2 if(context->current_task==PCX_TASK_LOAD_DATA) {

3 switch(context->bpp) {

4 ...

5 case 4:

6 retval=pcx_increment_load_data_4(context);

7 static gboolean pcx_increment_load_data_4(){

8 ...

9 p=read_pixel_4(planes[0], i)&0xf;

10 }

11 }

12 }

13 }

14 static guchar read_pixel_4(){

15 if(!(offset % 2))

16 etval = data[offset] >> 4;

17 }

Listing 1: Example of a heap-overflow in gdk-pixbuf 2.31.1.

by HyperGo plays a crucial role in discovering better seeds, which
are more likely to cover unexplored branches so as to explore more
paths toward target sites. This is essential for achieving faster attain-

ment of the target sites in directed fuzzing.

5.7. Discovering new vulnerabilities

To answer RQ4, we used HyperGo to test real-world programs. We
first used sanitizers (i.e., UBSAN (Undefined behavior sanitizer, 2023)
and ASAN (Serebryany et al., 2012)) to locate and label potential vul-

nerabilities as the target sites. Then, we run HyperGo for 24 hours
to detect new vulnerabilities. Finally, HyperGo discovered 10 undis-

closed vulnerabilities from 5 real-world programs. The information
about these vulnerabilities is presented in Table 4. From the table, we
can see that the new vulnerabilities involve heap-buffer-overflow, out-

of-bounds read/write, and Null pointer deference.

We also used the baseline fuzzers to detect them. As a result, among
the 10 discovered vulnerabilities, 5 could also be detected by AFLGo,
5 by AFLGoSy, 5 by BEACON, 4 by WindRanger, and 2 by ParmeSan.
As for the reason that the vulnerabilities could not be detected, one
is that the fuzzer could not run the program or obtain the distance
information for analysis, while the other reason is the vulnerability
could not be triggered within the time budget. From the above result,
we can conclude that HyperGo can detect new vulnerabilities from
real-world programs, and it outperforms the baseline fuzzers. We
use the example in Listing 1 as a case study to explain why HyperGo
could discover more vulnerabilities than the baseline fuzzers. Listing 1

shows a heap-overflow vulnerability in function read_pixel_4() of
gdk-pixbuf 2.31.1. At Line 16, due to the lack of range restriction on
variable offset, if the value of offset exceeds the memory allo-
cated for the array data, a heap overflow would occur. To trigger this

Computers & Security 142 (2024) 103851P. Lin, P. Wang, X. Zhou et al.

Table 4

New vulnerabilities detected by HyperGo.

No Prog Bug location Bug Type CNNVD-ID GSBWPH

1 cflow1.6 symbol.c:302 heap-buffer-overflow 2023-88222684 × ×✓✓×✓
2 gdk-pixbuf-2.31 gdk-pixdata.c:439 heap-buffer-overflow 2023-38595027 ✓✓✓✓✓✓
3 gdk-pixbuf-2.31 io-qtif.c:437 out-of-bound read 2023-61429059 ✓✓✓✓×✓
4 gdk-pixbuf-2.31 io-pcx.c:271 heap-buffer-overflow 2023-36676426 ×××××✓
5 gdk-pixbuf-2.31 io-pcx.c:528 heap-buffer-overflow 2023-93057825 ✓✓✓✓×✓
6 gdk-pixbuf-2.31 gdk-pixdata.c:142 heap-buffer-overflow 2023-18623971 ××✓××✓
7 jhead-3.00 jpgqguess.c:195 heap-buffer-overflow 2023-28389092 ××××✓✓
8 flvmeta-1.2.1 dump_xml.c:271 out-of-bound read 2023-88566232 ×××××✓
9 fig2dev bound.c:525 Null pointer dereference 2023-43290258 ✓✓×××✓
10 fig2dev arrow.c:89 out-of-bound read 2023-87146636 ✓✓×××✓

1* In the last column, letters G, S, B, W, P, and H represent AFLGo, AFLGoSy, BEACON, WindRanger,
ParmeSan, and HyperGo, respectively.

2* ‘×’ denotes that the fuzzer was unable to discover the vulnerability, while ‘✓’ signifies that the
fuzzer was able to discover the vulnerability.
vulnerability, the fuzzer needs to generate inputs that satisfy both the
path constraints at Line 1 and Line 3 and satisfy the root cause of the
vulnerability. Within the time budget of 24 hours, AFLGo, AFLGoSy,
WindRanger, and BEACON failed to generate specific inputs that satisfy
all three conditions simultaneously to trigger this vulnerability. Based
on three optimization strategies, HyperGo was able to reach Line 10
more efficiently and generated an input that triggers the vulnerability
within 160 minutes.

6. Discussion

HyperGo adopts three optimizations to enhance the directedness, in-

cluding the probability-based distance, the DMAB model, and the OSEC
scheme. Specifically, the probability-based distance prioritizes the opti-

mal seeds which have shorter seed distances and higher path probabil-

ities. The DMAB model optimizes the power schedule, which implicitly
balances the exploitation of seeds with short distances and the explo-

ration of more reachable seeds. The OSEC scheme combines DGF and SE
in a complementary manner. After pruning the unreachable and unsolv-

able branches, HyperGo prioritizes the symbolic execution of the seeds
with higher scores to accelerate the speed of reaching targets. Experi-

ments have proved the effectiveness of HyperGo in reaching the target
sites (Section 5.2), exposing the known vulnerabilities (Section 5.3),
and discovering new vulnerabilities (Section 5.7). Moreover, we also
proved the effectiveness of the three optimizations (Section 5.4), and
we can visually see their effectiveness via branch probability distribu-

tion of unexplored branches (Section 5.6).

Different from the SOTA experience-based and intuition-based DGF
techniques, HyperGo adopts the probability-based fitness metrics and
improvement methods that allowed it to maintain high accuracy across
testing different programs in different fuzzing phases. The probability
is calculated according to the simple branch hits rather than relying on
program analysis or expert knowledge. Therefore, the probability-based
fitness metric, the OSEC scheme, and the DMAB model can adaptively
select the optimal seeds or optimal paths in current fuzzing phases ac-

cording to the testing information. Compared to other DGF techniques,
HyperGo’s adaptability allows it to have higher accuracy when testing
most programs.

Threat to validation. Aiming to design an adaptive approach, we
adopt several heuristic parameters in HyperGo, which are set empir-

ically (e.g., the setting of the adjustment factor). The values of these
parameters might to some extent affect the performance of HyperGo.
However, after extensive experiments, we believe the setting of these
parameters is stable and suitable for most of the testing scenarios.

7. Related work

In this section, we focus on discussing the most related works: di-
13

rected greybox fuzzing and directed hybrid fuzzing.
Directed Grey-box Fuzzing. AFLGo is the first directed greybox
fuzzer. It calculates the distances between the seeds and pre-defined
targets to prioritize the seeds closer to the targets, which casts reach-

ability as an optimization problem to minimize the distance between
the seeds and their targets. Based on AFLGo’s idea, Hawkeye (Chen
et al., 2018) proposes the concept of trace similarity and adjusts its
seed prioritization, power scheduling, and mutation strategies to en-

hance directedness. However, Hawkeye suffers the same issues as those
of AFLGo when encountering complex path constraints. Even if they as-

sign more energy to the closer seeds, it is difficult for them to satisfy the
complex path constraints to cover the path toward target sites. Some di-

rected greybox fuzzers, such as LOLLY (Liang et al., 2019), Berry (Liang
et al., 2020), UAFL (Wang et al., 2020a), and CAFL (Lee et al., 2021),
propose new fitness metrics, such as sequence similarity, to enhance
directedness and detect hard to manifest vulnerabilities. These meth-

ods are derived from the analysis of program characteristics or the root
causes of different vulnerabilities. Thus, for some specific programs or
fuzzing processes, these new fitness metrics may be inaccurate and take
a negative effect, which has been discussed in Section 2.2. Other di-

rected greybox fuzzers use data flow information and data conditions
information to enhance directedness. WindRanger (Du et al., 2022) uses
the deviation basic blocks (DBBs) and the data flow information for
seed distance calculation, seed mutation, seed prioritization, and power
schedule. BEACON (Huang et al., 2022) leverages a provable path-

pruning method to reduce the exploration of infeasible paths. However,
due to the limitations of static analysis, BEACON’s analysis of infeasible
paths (e.g., BEACON cannot recognize indirect calls) may be inaccurate.
This can result in the incorrect pruning of some feasible paths, and con-

sequently slowing down the process of reaching target sites. Besides,
FuzzGuard (Zong et al., 2020) uses the deep neural network to extract
the features of reachable seeds and filter out the unreachable seeds to
improve efficiency. To search the inputs that can reach the target sites,
𝑀𝐶2 designs an asymptotically optimal randomized directed greybox
fuzzer that has logarithmic expected execution complexity in the num-

ber of possible inputs. However, DGF still suffers from being difficult
to penetrate through the hard-to-satisfy path constraints. HyperGo se-

lects the better paths that have fewer hard-to-satisfy path constraints
and utilizes symbolic execution to assist DGF to pass through such path
constraints.

Directed Hybrid Fuzzing. Directed Hybrid Fuzzing uses the heuris-

tic strategies in hybrid fuzzing to gain directedness. Directed hybrid
fuzzers achieve directedness by prioritizing the symbolic execution
of reachable seeds or closer seeds. Hydiff (Lattimore, 2016), SAVIOR
(Chen et al., 2020b) and Badger (Noller et al., 2019) prioritize the seeds
that may cause the specific program bug locations as the target sites,
and then prioritizes symbolic execution of the seeds which are reachable
from more target sites. DrillerGO (Kim and Yun, 2019), 1dvul (Peng
et al., 2019), and Berry (Liang et al., 2020) combine the precision of

DSE and the scalability of DGF to mitigate their individual weaknesses.

P. Lin, P. Wang, X. Zhou et al.

However, modern directed hybrid fuzzers suffer from the limitation of
symbolic execution. Since the symbolic executor may fail to solve many
unexplored branches or succeed in solving the unreachable branches,
such useless constraint solving will have a negative impact on the di-

rectedness of directed hybrid fuzzing. Thus, HyperGo uses the OSEC
scheme to prune the unreachable and unsolvable branches and priori-

tize the symbolic execution of the optimal seeds to better combine DGF
and SE.

8. Conclusion

In this paper, we propose HyperGo, a probability-based directed
hybrid fuzzer. HyperGo adopts the probability-based distance as the fit-

ness metric and an optimized power schedule (namely DMAB model),
which can steer DGF to faster reach the target sites through the paths
that are easier to re-exercise and closer to the target sites. Using the
OSEC scheme, HyperGo combines DGF and SE in a complementary
manner to focus on solving constraints toward reachable targets. Hy-

perGo is evaluated on 100 target vulnerabilities of 21 real-world pro-

grams from 2 datasets, the experiment results show that HyperGo out-

performs the state-of-the-art directed fuzzers (AFLGo, BEACON, Win-

dRanger, and ParmeSan) in reaching target sites and exposing known
vulnerabilities. Moreover, HyperGo also discovered 10 undisclosed vul-

nerabilities and demonstrated its effectiveness in vulnerability discov-

ery.

CRediT authorship contribution statement

Peihong Lin: Writing – review & editing, Writing – original draft,
Visualization, Validation, Supervision, Software, Resources, Project ad-

ministration, Methodology, Investigation, Funding acquisition, Formal
analysis, Data curation, Conceptualization. Pengfei Wang: Writing –
review & editing, Writing – original draft, Visualization, Validation, Su-

pervision, Software, Resources, Project administration, Methodology,
Investigation, Data curation, Conceptualization. Xu Zhou: Visualiza-

tion, Validation, Supervision. Wei Xie: Resources, Project administra-

tion, Methodology. Kai Lu: Validation, Supervision, Resources, Project
administration, Methodology, Investigation. Gen Zhang: Writing – re-

view & editing, Visualization, Validation, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

I have shared the artifact on-line.

Acknowledgements

This work is partially supported by the National Key Research and
Development Program of China under Grant No. 2021YFB0300101, the
National Natural Science Foundation of China (62272472, 61902405,
U22B2005, 61972412, 62306328), the Hunan Provincial Natural Sci-

ence Foundation (2021JJ40692), and the National High-level Personnel
for Defense Technology Program (2017-JCJQ-ZQ-013).

References

GNU Binutils. https://www .gnu .org /software /binutils/.

Undefined behavior sanitizer – clang 9 documentation. http://clang .llvm .org /docs /
UndefinedBehaviorSanitizer.

Arshad, A., Weissbacher Blair, S., Mambretti, W., HotFuzz, M. Egele, 2020. Discovering
algorithmic denial-of-service vulnerabilities through guided micro-fuzzing. In: Net-
14

work and Distributed System Security Symposium.
Computers & Security 142 (2024) 103851

Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E., 2002. The nonstochastic multiarmed
bandit problem. SIAM J. Comput. 32 (1), 48–77.

Böhme, Marcel, 2023. Directed greybox fuzzing with AFL. https://github .com /aflgo /
aflgo.

Böhme, Marcel, Pham, Van-Thuan, Roychoudhury, Abhik, 2016. Coverage-based grey-

box fuzzing as Markov chain. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. Vienna, Austria, October 24–28, 2016.
ACM, pp. 1032–1043.

BoHme, Marcel, Pham, Van Thuan, Nguyen, Manh Dung, Roychoudhury, Abhik, 2017.
Directed greybox fuzzing. In: Acm Sigsac Conference on Computer & Communications
Security, pp. 2329–2344.

Changhua Luo, Wei Meng, Li, Penghui, 2023. SelectFuzz: efficient directed fuzzing with
selective path exploration. In: 2023 IEEE Symposium on Security and Privacy. SP.

Chen, Hongxu, Xue, Yinxing, Li, Yuekang, Chen, Bihuan, Xie, Xiaofei, Wu, Xiuheng, Liu,
Yang, 2018. Hawkeye: towards a desired directed grey-box fuzzer. In: Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security. CCS
2018, Toronto, ON, Canada, October 15–19, 2018. ACM, pp. 2095–2108.

Chen, Hongxu, Guo, Shengjian, Xue, Yinxing, Sui, Yulei, Zhang, Cen, Li, Yuekang, Wang,
Haijun, Liu, Yang, 2020a. MUZZ: thread-aware grey-box fuzzing for effective bug
hunting in multithreaded programs. In: 29th USENIX Security Symposium. USENIX
Security 20. USENIX Association, pp. 2325–2342.

Chen, Peng, Chen, Hao, 2018. Angora: efficient fuzzing by principled search. In: 2018
IEEE Symposium on Security and Privacy. SP 2018, Proceedings, San Francisco, Cal-

ifornia, USA, 21–23 May 2018. IEEE Computer Society, pp. 711–725.

Chen, Peng, Liu, Jianzhong, Chen, Hao, 2019. Matryoshka: fuzzing deeply nested
branches. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. CCS 2019, London, UK, November 11–15, 2019. ACM,
pp. 499–513.

Chen, Yaohui, Li, Peng, Xu, Jun, Guo, Shengjian, Zhou, Rundong, Zhang, Yulong, Wei,
Tao, Lu, Long, 2020b. SAVIOR: towards bug-driven hybrid testing. In: 2020 IEEE
Symposium on Security and Privacy. SP 2020, San Francisco, CA, USA, May 18–21,
2020. IEEE, pp. 1580–1596.

Du, Zhengjie, Li, Yuekang, Liu, Yang, Mao, Bing, 2022. WindRanger: a directed greybox
fuzzer driven by DeviationBasic blocks. In: ICSE ’22: 44th International Conference
on Software Engineering. ACM.

Fioraldi, Andrea, Maier, Dominik, Eißfeldt, Heiko, Heuse, Marc, 2020. AFL++: combin-

ing incremental steps of fuzzing research. In: 14th USENIX Workshop on Offensive
Technologies. WOOT 20. USENIX Association. https://www .usenix .org /conference /
woot20 /presentation /fioraldi.

Gan, Shuitao, Zhang, Chao, Chen, Peng, Zhao, Bodong, Qin, Xiaojun, Wu, Dong, Chen,
Zuoning, 2020. GREYONE: data flow sensitive fuzzing. In: 29th USENIX Security
Symposium. USENIX Security 20. USENIX Association, pp. 2577–2594. https://

www .usenix .org /conference /usenixsecurity20 /presentation /gan.

Ganesh, Vijay, Leek, Tim, Rinard, Martin, 2009. Taint-based directed whitebox fuzzing.
In: 2009 IEEE 31st International Conference on Software Engineering, pp. 474–484.

Huang, Heqing, Guo, Yiyuan, Shi, Qingkai, Yao, Peisen, Wu, Rongxin, Zhang, Charles,
2022. Beacon: directed grey-box fuzzing with provable path pruning. In: The 43rd
IEEE Symposium on Security and Privacy. S&P’22.

Kim, Juhwan, Yun, Joobeom, 2019. Poster: directed hybrid fuzzing on binary code. In:
The 2019 ACM SIGSAC Conference.

Lattimore, Tor, 2016. Regret analysis of the finite-horizon gittins index strategy for
multi-armed bandits. In: Feldman, Vitaly, Rakhlin, Alexander, Shamir, Ohad (Eds.),
Proceedings of the 29th Conference on Learning Theory. COLT 2016, New York,
USA, June 23–26, 2016. In: JMLR Workshop and Conference Proceedings, vol. 49,
pp. 1214–1245. http://proceedings .mlr .press /v49 /lattimore16 .html.

lcamtuf, 2023. American fuzzy lop (AFL) fuzzer. https://lcamtuf .coredump .cx /afl/.

Lee, Gwangmu, Shim, Woochul, Lee, Byoungyoung, 2021. Constraint-guided directed
greybox fuzzing. In: 30th USENIX Security Symposium. USENIX Security 21. USENIX
Association, pp. 3559–3576. https://www .usenix .org /conference /usenixsecurity21 /
presentation /lee -gwangmu.

Lemieux, Caroline, Sen, Koushik, 2018. FairFuzz: a targeted mutation strategy for in-

creasing greybox fuzz testing coverage. In: Proceedings of the 33rd ACM/IEEE In-

ternational Conference on Automated Software Engineering. ASE 2018, Montpellier,
France, September 3–7, 2018. ACM, pp. 475–485.

Li, Yuwei, Ji, Shouling, Chen, Yuan, Liang, Sizhuang, Lee, Wei-Han, Chen, Yueyao,
Lyu, Chenyang, Wu, Chunming, Beyah, Raheem, Cheng, Peng, Lu, Kangjie, Wang,
Ting, 2021. UNIFUZZ: a holistic and pragmatic metrics-driven platform for eval-

uating fuzzers. In: 30th USENIX Security Symposium. USENIX Security 2021, Au-

gust 11–13, 2021. USENIX Association, pp. 2777–2794. https://www .usenix .org /
conference /usenixsecurity21 /presentation /li -yuwei.

Liang, Hongliang, Zhang, Yini, Yu, Yue, Xie, Zhuosi, Jiang, Lin, 2019. Sequence Coverage
Directed Greybox Fuzzing (ICPC ’19). IEEE Press.

Liang, Hongliang, Jiang, Lin, Ai, Lu, Wei, Jinyi, 2020. Sequence directed hybrid
fuzzing. In: 27th IEEE International Conference on Software Analysis, Evolution and
Reengineering. SANER 2020, London, ON, Canada, February 18–21, 2020. IEEE,
pp. 127–137.

Ma, Kin Keung, Khoo, Yit Phang, Foster, Jeffrey S., Hicks, Michael, 2011. Directed
symbolic execution. In: Static Analysis – 18th International Symposium. SAS 2011,
Venice, Italy, September 14–16, 2011, Proceedings.

Marinescu, Paul Dan, Cadar, Cristian, 2013. KATCH: high-coverage testing of software

patches. In: Joint Meeting of the European Software Engineering Conference and

https://www.gnu.org/software/binutils/
http://clang.llvm.org/docs/UndefinedBehaviorSanitizer
http://clang.llvm.org/docs/UndefinedBehaviorSanitizer
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibD67D8AB4F4C10BF22AA353E27879133Cs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibD67D8AB4F4C10BF22AA353E27879133Cs1
https://github.com/aflgo/aflgo
https://github.com/aflgo/aflgo
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib101BC37450FBF3D0E8B3F494ECD64D44s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib101BC37450FBF3D0E8B3F494ECD64D44s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib33E75FF09DD601BBE69F351039152189s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib33E75FF09DD601BBE69F351039152189s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib33E75FF09DD601BBE69F351039152189s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib33E75FF09DD601BBE69F351039152189s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib37693CFC748049E45D87B8C7D8B9AACDs1
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/usenixsecurity20/presentation/gan
https://www.usenix.org/conference/usenixsecurity20/presentation/gan
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib4E732CED3463D06DE0CA9A15B6153677s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib4E732CED3463D06DE0CA9A15B6153677s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib4E732CED3463D06DE0CA9A15B6153677s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://proceedings.mlr.press/v49/lattimore16.html
https://lcamtuf.coredump.cx/afl/
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-gwangmu
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-gwangmu
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC9F0F895FB98AB9159F51FD0297E236Ds1
https://www.usenix.org/conference/usenixsecurity21/presentation/li-yuwei
https://www.usenix.org/conference/usenixsecurity21/presentation/li-yuwei
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib5076E33378DB3B35C88D9189851ED3BFs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib5076E33378DB3B35C88D9189851ED3BFs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib5076E33378DB3B35C88D9189851ED3BFs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib5076E33378DB3B35C88D9189851ED3BFs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC51CE410C124A10E0DB5E4B97FC2AF39s1

P. Lin, P. Wang, X. Zhou et al.

the ACM SIGSOFT Symposium on the Foundations of Software Engineering. ESEC/F-

SE’13, Saint Petersburg, Russian Federation, August 18–26, 2013. ACM, pp. 235–245.

Nguyen, Manh-Dung, Bardin, Sébastien, Bonichon, Richard, Groz, Roland, Lemerre,
Matthieu, 2020. Binary-level directed fuzzing for use-after-free vulnerabilities. In:
23rd International Symposium on Research in Attacks, Intrusions and Defenses. RAID
2020, San Sebastian, Spain, October 14–15, 2020. USENIX Association, pp. 47–62.
https://www .usenix .org /conference /raid2020 /presentation /nguyen.

Noller, Yannic, Kersten, Rody, Pasareanu, Corina S., 2019. Badger: complexity analysis
with fuzzing and symbolic execution. In: Becker, Steffen, Bogicevic, Ivan, Herzwurm,
Georg, Wagner, Stefan (Eds.), Software Engineering and Software Management.
SE/SWM 2019, Stuttgart, Germany, February 18–22, 2019. In: LNI, vol. P-292. GI,
pp. 65–66.

Noller, Yannic, Pasareanu, Corina S., Böhme, Marcel, Sun, Youcheng, Nguyen,
Hoang Lam, Grunske, Lars, 2020. HyDiff: hybrid differential software analysis. In:
Rothermel, Gregg, Bae, Doo-Hwan (Eds.), ICSE ’20: 42nd International Confer-

ence on Software Engineering. Seoul, South Korea, 27 June–19 July, 2020. ACM,
pp. 1273–1285.

Peng, Jiaqi, Li, Feng, Liu, Bingchang, Xu, Lili, Liu, Binghong, Chen, Kai, Huo, Wei, 2019.
1dVul: discovering 1-day vulnerabilities through binary patches. In: 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks. DSN 2019,
Portland, OR, USA, June 24–27, 2019. IEEE, pp. 605–616.

Plackett, R.L., 1958. Studies in the history of probability and statistics: VII. The princi-

ple of the arithmetic mean. Biometrika 45 (1–2), 130–135. https://doi .org /10 .1093 /
biomet /45 .1 -2 .130.

Poeplau, Sebastian, Francillon, Aurélien, 2020. Symbolic execution with SymCC: don’t
interpret, compile! In: Capkun, Srdjan, Roesner, Franziska (Eds.), 29th USENIX Secu-

rity Symposium. USENIX Security 2020, August 12–14, 2020. USENIX Association,
pp. 181–198. https://www .usenix .org /conference /usenixsecurity20 /presentation /
poeplau.

Serebryany, Konstantin, Bruening, Derek, Potapenko, Alexander, Vyukov, Dmitriy, 2012.
AddressSanitizer: a fast address sanity checker. In: 2012 USENIX Annual Technical
Conference. USENIX ATC 12. USENIX Association, Boston, MA, pp. 309–318. https://

www .usenix .org /conference /atc12 /technical -sessions /presentation /serebryany.

Shah, Abhishek, She, Dongdong, Sadhu, Samanway, Singal, Krish, Coffman, Peter, Jana,
Suman, 2022. MC2: rigorous and efficient directed greybox fuzzing (CCS ’22). Los
Angeles, CA, USA. https://doi .org /10 .1145 /3548606 .3560648.

Shin, Y., Williams, L., 2013. Can traditional fault prediction models be used for vulnera-

bility prediction? Empir. Softw. Eng. 18 (1), 25–59.

Wang, Haijun, Xie, Xiaofei, Li, Yi, Wen, Cheng, Li, Yuekang, Liu, Yang, Qin, Shengchao,
Chen, Hongxu, Sui, Yulei, 2020a. Typestate-guided fuzzer for discovering use-after-

free vulnerabilities. In: ICSE ’20: 42nd International Conference on Software Engi-

neering. Seoul, South Korea, 27 June–19 July, 2020. ACM, pp. 999–1010.

Wang, Xinyu, Sun, Jun, Chen, Zhenbang, Zhang, Peixin, Wang, Jingyi, Lin, Yun, 2018.
Towards optimal concolic testing. In: Proceedings of the 40th International Confer-

ence on Software Engineering. ICSE 2018, Gothenburg, Sweden, May 27–June 03,
2018. ACM, pp. 291–302.

Wang, Y., Jia, X., Liu, Y., Zeng, K., Su, P., 2020b. Not all coverage measurements are
equal: fuzzing by coverage accounting for input prioritization. In: Network and Dis-

tributed System Security Symposium.

Wen, Cheng, Wang, Haijun, Li, Yuekang, Qin, Shengchao, Liu, Yang, Xu, Zhiwu, Chen,
Hongxu, Xie, Xiaofei, Pu, Geguang, Liu, Ting, 2020. MemLock: memory usage guided
fuzzing. In: ICSE ’20: 42nd International Conference on Software Engineering. Seoul,
South Korea, 27 June–19 July, 2020. ACM, pp. 765–777.

Yang, Guowei, Rungta, Neha, Khurshid, Sarfraz, Person, Suzette, 2011. Directed incre-

mental symbolic execution. In: ACM SIGPLAN Notices: A Monthly Publication of the
Special Interest Group on Programming Languages.

Yue, Tai, Wang, Pengfei, Tang, Yong, Wang, Enze, Yu, Bo, Lu, Kai, Zhou, Xu, 2020.
EcoFuzz: adaptive energy-saving greybox fuzzing as a variant of the adversarial multi-

armed bandit. In: 29th USENIX Security Symposium. USENIX Security 20. USENIX
Association, pp. 2307–2324. https://www .usenix .org /conference /usenixsecurity20 /
presentation /yue.

Yun, Insu, Lee, Sangho, Xu, Meng, Jang, Yeongjin, Kim, Taesoo, 2018. QSYM: a prac-

tical concolic execution engine tailored for hybrid fuzzing. In: Enck, William, Felt,
Adrienne Porter (Eds.), 27th USENIX Security Symposium. USENIX Security 2018,
Baltimore, MD, USA, August 15–17, 2018. USENIX Association, pp. 745–761. https://

www .usenix .org /conference /usenixsecurity18 /presentation /yun.

Zhang, Gen, Wang, Pengfei, Yue, Tai, Kong, Xiangdong, Huang, Shan, Zhou, Xu, Lu,
Kai., 2022. MobFuzz: adaptive multi-objective optimization in gray-box fuzzing. In:
Proceedings 2022 Network and Distributed System Security Symposium. https://

api .semanticscholar .org /CorpusID :248224859.
15
Computers & Security 142 (2024) 103851

Zhao, Lei, Duan, Yue, Yin, Heng, Xuan, Jifeng, 2019. Send hardest problems
my way: probabilistic path prioritization for hybrid fuzzing. In: 26th An-

nual Network and Distributed System Security Symposium. NDSS 2019, San
Diego, California, USA, February 24–27, 2019. The Internet Society. https://

www .ndss -symposium .org /ndss -paper /send -hardest -problems -myway -probabilistic -
path -prioritization -for -hybrid -fuzzing/.

Zong, Peiyuan, Lv, Tao, Wang, Dawei, Deng, Zizhuang, Liang, Ruigang, Chen, Kai, 2020.
FuzzGuard: filtering out unreachable inputs in directed grey-box fuzzing through
deep learning. In: 29th USENIX Security Symposium. USENIX Security 20. USENIX
Association, pp. 2255–2269. https://www .usenix .org /conference /usenixsecurity20 /
presentation /zong.

Peihong Lin received his B.S. and M.S. degree in the Col-

lege of Command and Control Engineering from PLA Army En-

gineering University, China, in 2018 and 2022. Currently, he is
pursuing the Ph.D degree in the College of Computer, National
University of Defense Technology, Changsha. His research inter-

ests include operating systems and software testing.

Pengfei Wang received his B.S., M.S., and Ph.D degrees in
computer science and technology, in 2011, 2013, and 2018 re-

spectively, from the College of Computer, National University of
Defense Technology, Changsha. He is now an associate profes-

sor in the College of Computer, National University of Defense
Technology, Changsha. His research interests include operating
systems and software testing.

Xu Zhou received his BS, MS, and Ph.D degree in the School
of Computer Science from National University of Defense Tech-

nology, China, in 2007, 2009, and 2013, respectively. He is now
an associate professor in the School of Computer Science, Na-

tional University of Defense Technology. His research interests
include operating system and security.

Wei Xie received his Ph.D degrees in 2014 from the College
of Electronic Science and Engineering, National University of De-

fense Technology, Changsha. He is now an associate professor in
the College of Computer, NUDT. His research interests include
security of Web, IoT, and AI.

Kai Lu received his B.S. degree and Ph.D. degree in 1995
and 1999, respectively, both in computer science and technology,
from the College of Computer, National University of Defense
Technology, Changsha. He is now a professor in the College of
Computer, National University of Defense Technology, Changsha.
His research interests include operating systems, parallel comput-

ing, and security.

Gen Zhang received his Ph.D. degree in computer science
and technology in 2022 from National University of Defense
Technology, Changsha. His research interests include fuzzing and
testing.

http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
https://www.usenix.org/conference/raid2020/presentation/nguyen
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib34173CB38F07F89DDBEBC2AC9128303Fs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib34173CB38F07F89DDBEBC2AC9128303Fs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib34173CB38F07F89DDBEBC2AC9128303Fs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib34173CB38F07F89DDBEBC2AC9128303Fs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib34173CB38F07F89DDBEBC2AC9128303Fs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC1886AA4D06CFAD7711B73620C2C2C8Cs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC1886AA4D06CFAD7711B73620C2C2C8Cs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC1886AA4D06CFAD7711B73620C2C2C8Cs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC1886AA4D06CFAD7711B73620C2C2C8Cs1
https://doi.org/10.1093/biomet/45.1-2.130
https://doi.org/10.1093/biomet/45.1-2.130
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1145/3548606.3560648
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib182BE0C5CDCD5072BB1864CDEE4D3D6Es1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib182BE0C5CDCD5072BB1864CDEE4D3D6Es1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib182BE0C5CDCD5072BB1864CDEE4D3D6Es1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib182BE0C5CDCD5072BB1864CDEE4D3D6Es1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S0167-4048(24)00152-4/bibC20AD4D76FE97759AA27A0C99BFF6710s1
https://www.usenix.org/conference/usenixsecurity20/presentation/yue
https://www.usenix.org/conference/usenixsecurity20/presentation/yue
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://api.semanticscholar.org/CorpusID:248224859
https://api.semanticscholar.org/CorpusID:248224859
https://www.ndss-symposium.org/ndss-paper/send-hardest-problems-myway-probabilistic-path-prioritization-for-hybrid-fuzzing/
https://www.ndss-symposium.org/ndss-paper/send-hardest-problems-myway-probabilistic-path-prioritization-for-hybrid-fuzzing/
https://www.ndss-symposium.org/ndss-paper/send-hardest-problems-myway-probabilistic-path-prioritization-for-hybrid-fuzzing/
https://www.usenix.org/conference/usenixsecurity20/presentation/zong
https://www.usenix.org/conference/usenixsecurity20/presentation/zong

	HyperGo: Probability-based directed hybrid fuzzing
	1 Introduction
	2 Background and motivation
	2.1 Background
	2.2 Motivation

	3 Probability-based directed hybrid fuzzing
	3.1 Probability-based distance
	3.1.1 Definition of probability-based distance
	3.1.2 Calculation of probability-based distance
	3.1.3 Calculation of seed distance

	3.2 Power schedule optimization
	3.2.1 Elements in DMAB model
	3.2.2 Design of power schedule

	3.3 Optimized symbolic execution complementary scheme
	3.3.1 Pruning the unreachable branches
	3.3.2 Pruning the unsolvable branches
	3.3.3 Prioritizing the symbolic execution of seeds

	4 Implementation
	5 Evaluation
	5.1 Evaluation setup
	5.2 Reaching target sites
	5.3 Exposing vulnerabilities
	5.4 The impact of the optimizations on the overall performance
	5.5 Intermediate data analysis
	5.6 Branch probability distribution analysis of the unexplored branches
	5.7 Discovering new vulnerabilities

	6 Discussion
	7 Related work
	8 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

