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Abstract—Mutation-based taint inference (MTI) is a novel
technique for taint analysis. Compared with traditional tech-
niques that track propagations of taint tags, MTI infers a variable
is tainted if its values change due to input mutations, which
is lightweight and conceptually sound. However, there are 3
challenges to its efficiency and scalability: (1) it cannot efficiently
record variable values to monitor their changes; (2) it consumes a
large amount of memory monitoring variable values, especially
on complex programs; and (3) its excessive memory overhead
leads to a low hit ratio of CPU cache, which slows down the speed
of taint inference. This paper presents an efficient and scalable
solution named HashMTI. We first explain the above challenges
based on 4 observations. Motivated by these challenges, we
propose a hash record scheme to efficiently monitor changes in
variable values and significantly reduce the memory overhead.
The scheme is based on our specially selected and optimized hash
functions that possess 3 crucial properties. Moreover, we propose
the DoubleMutation strategy, which applies additional mutations
to mitigate the limitation of the hash record and detect more
taint information. We implemented a prototype of HashMTI and
evaluated it on 18 real-world programs and 4 LAVA-M programs.
Compared with the baseline OrigMTI, HashMTI significantly
reduces the overhead while having similar accuracy. It achieves
a speedup of 2.5X to 23.5X and consumes little memory which
is on average 70.4 times less than that of OrigMTI.

Index Terms—program analysis, taint analysis, software testing

I. INTRODUCTION

Taint analysis is a well-known technique in software se-
curity for tracking information flows. It has many uses such
as malware analysis [1] [2] [3] and vulnerability discovery
[4] [5]. Especially, dynamic taint analysis (DTA) allows re-
searchers to reason about actual executions, and thus perform
precise analysis [6]. During program execution, DTA marks a
variable as tainted if the variable depends on data derived from
predefined taint sources, such as external inputs. The byte-
level DTA, which reports dependencies between input bytes
and “interesting” program variables (e.g., unexplored branch
conditions), is also used to optimize software testing. For
instance, it answers the classical question “where to mutate”
[7] [8] of fuzzing and guides concolic execution to selectively
symbolize input data [9] [10]. However, DTA suffers from
over-taint and under-taint issues since it tracks possible in-
formation flows according to predefined propagation rules. It
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also has considerable overhead for interpreting instructions and
storing taint labels.

Compared with traditional taint analysis, another technique
works by detecting causal relationships between variable value
changes and input mutations [11], which we call “Mutation-
based Taint Inference” (MTI). MTI infers a variable is tainted
if the variable’s values change due to input mutations. This
is conceptually sound since a counterfactual causality [12]
proves the existence of information flow from the input to
the variable. It is also immune to the issues of DTA caused
by implicit flows [13] and external calls since it does not
track specific paths of information flows. In addition, MTI
requires neither predefined propagation rules nor instruction
interpretations and thus is lightweight and easy to customize.
It is also natively suitable for optimizing software testing
since its mutation stages can be integrated into the test case
generation process of software testing [14] [15].

However, MTI needs to record the runtime variable values
to monitor their changes, which leads to 3 challenges to its
efficiency and scalability. First, MTI cannot efficiently record
those variable values. According to our observations in Section
II-B, existing MTI methods either waste much memory or lose
records. Second, for complex code (e.g., deep loops), MTI
needs to record a large number of variable values and thus
consumes a large amount of memory. Finally, the excessive
memory overhead of MTI also leads to a low hit ratio of CPU
cache and thus slows down the speed of taint inference.

This paper presents an efficient and scalable solution named
HashMTI to resolve the above challenges. For each variable,
we compute the hash of its runtime values on the fly to monitor
their changes. Thus, each variable has only one hash record
and the total number of hash records is a constant. Therefore,
we can efficiently monitor changes in variable values with
O(1) space complexity and make better use of the CPU cache.
To compute the hash record, we select two non-cryptographic
hash functions that possess 3 crucial properties (i.e., iterative
computations, lightweight and collision resistance). We further
optimize them for higher speed. Moreover, we propose the
DoubleMutation strategy for the mutation stage of MTI, which
is designed for mitigating the limitation of the hash record
and also helps detect more taint information. The strategy is
economically applied based on a heuristic indicator.



We implemented a prototype of HashMTI and evaluated
it with the original MTI tool OrigMTI on 18 real-world
programs and the LAVA-M benchmark [16]. According to the
results, HashMTI significantly reduces the memory and time
overhead of OrigMTI while maintaining a considerable degree
of accuracy. Compared with the OrigMTI, HashMTI consumes
2 to 594.7 times less memory and achieves a speedup of
2.5X to 23.5X. When both are compared with the Libdft [17],
HashMTI achieves a similar recall ratio as OrigMTI.

In summary, this paper makes the following contributions:
• Challenges. We summarize 3 challenges of existing MTI

according to our observations on its recording schemes.
• Hash record scheme. We propose a hash record scheme

to resolve the aforementioned challenges. It is achieved
by our specially selected and optimized hash functions
that possess 3 crucial properties we summarized.

• DoubleMutation strategy. We propose the DoubleMuta-
tion strategy for the mutation stage of MTI. This strategy
can mitigate the limitation of the hash record and help
detect more taint information (3% to 35% of the total).
We also employ a heuristic indicator to be more efficient.

• Tool. We implement a prototype of HashMTI and evalu-
ate it on 18 real-world programs and the LAVA-M bench-
mark. The results showed that HashMTI can significantly
improve the efficiency and scalability of the original MTI.

II. BACKGROUND

A. Mutation-based Taint Inference

Mutation-based taint inference (MTI) is a novel technique
for taint analysis. To the best of our knowledge, MTI was
first presented in MUTAFLOW [11] for detecting information
flow in android applications. Inspired by mutation analysis
[18], MUTAFLOW directly mutates runtime values returned
by sensitive sources to assess whether the mutation changes
the values passed to sensitive sinks. In effect, it infers the
dependencies between inputs and variables based on causal
relationships between input mutations and variable changes.

Other works such as SLF [14] and GREYONE [15] employ
MTI to optimize fuzzing, where MTI is also named “Fuzzing-
driven Taint Inference” (FTI). According to their papers, the
pseudocode of MTI is shown in Algorithm 1. At line 1, the
instrumented program is executed to record original variable
values (i.e., the operand of branch instructions). At lines 2–
4, it systematically mutates each input byte (one at a time)
and executes the program again to obtain new records. At
lines 5–13, it compares the records of the two executions. If
a variable’s value changes while an input byte is mutated, it
reports that the former is tainted and depends on the latter.

Below, we further discuss the core components of MTI: the
mutation strategies and the recording schemes.

Mutation. Existing works adopt various mutation strategies.
MUTAFLOW directly mutates variable values; however, it
may violate input-validation conditions. By contrast, SLF and
GREYONE mutate the input data before it is loaded by the
program. Specifically, GREYONE mutates each byte several

Algorithm 1 Mutation-based taint inference

Input: input, program P and instrumented program P′

Output: br.taint[input] | br ∈ branches(P)
1: Record = Execute(P′

, input)
2: for each position pos in the input do
3: input

′
= Mutate(input, pos)

4: Record
′

= Execute(P′
, input

′
)

5: for br ∈ branches(P) do
6: N = MIN(len(Record[br]), len(Record

′
[br]))

7: for i from 0 to N − 1 do
8: if Record[br][i].opnds 6= Record

′
[br][i].opnds

then
9: br.taint[input] ∪ = {pos}

10: break
11: end if
12: end for
13: end for
14: end for

1 w h i l e ( 1 ) {
2 c h a r c = INPUT BYTE ( fd ) ;
3 i f ( c == 0xD8 )
4 g e t s o i ( fd ) ; / / SOI : s t a r t o f f i l e
5 e l s e i f ( c == 0xC0 | | c == 0xC1 | | . . . )
6 g e t s o f ( fd ) ; / / SOF : s t a r t o f f rame
7 e l s e i f ( c == 0xC4 )
8 g e t d h t ( fd ) ; / / DHT: huffman t a b l e
9 . . .

10 e l s e i f ( c == 0xD9 )
11 r e t u r n JPEG REACHED EOI ; / / End of Image
12 e l s e e x i t ( ) ; / / I n v a l i d marker
13 }

Listing 1: Simplified read marker() of jdmarker.c

times with a set of strategies, while SLF mutates each byte
only once with the operation of “ByteFlip”. Thus, the mutation
stage of MTI can be integrated into the test case generation
process. In our opinion, the former can mitigate the influence
of non-injective functions (e.g., shift operation) which could
conceal the effect of input mutations. However, according to a
general consensus [19] [20], the latter is more efficient since
it spends less time on systematically mutating input data.

Recording. Existing MTI methods record each variable’s
runtime values to monitor their changes. SLF employs a linear
array for recording. It uses program counters to identify each
variable, whereby it can align two executions’ records to detect
the changes in each variable’s values. GREYONE assigns a
unique ID for each variable and stores its values in a bitmap
(with the ID as key). However, both the schemes have their
limitations. We discussed these limitations in Section II-B.

B. Motivation

As shown in Listing 1, we use the code simplified from
libjpeg-turbo [21], a known JPEG image codec, to explain the
challenges of MTI. We first state 4 key observations on the
records (i.e., the variables’ runtime values) of MTI as follows.

A variable has multiple records. Programs usually use
loops to parse the same type of AST nodes. For example,



(a) test case id: 000417 (b) test case id: 000536 (c) test case id: 000642 (d) test case id: 001046

Fig. 1: The heat maps depict the branch execution count of libjpeg-turbo on 4 test cases. Each cell represents a branch and its
color indicates the branch’s execution count. For simplicity, we omit branches that are not executed in all the 4 test cases.

TABLE I: Memory consumption of MTI when working on
timeout test cases of fuzzing (0.2 s < exec time < 3 s).

Programs #Testcases Average(GB) Maximum(GB)
avconv 7 9.9 28.3
ffmpeg 57 7.6 20.7
pdftops 69 6.7 22.5
djpeg 9 2.9 10.0

magick 63 0.2 3.3
objdump 72 0.1 3.4

the code in Listing 1 repeatedly executes the loop to parse
the marker of each segment in the JPEG header. To detect
information flows from related input bytes to the operand c,
we should record the operand’s values each time it is used for
comparison. Thus, the operand of each branch instruction has
multiple records whose number is equal to the branch execu-
tion count. Considering this phenomenon, in Algorithm 1, we
check all records of each variable (at lines 6–12). However,
neither SLF nor GREYONE mentioned this phenomenon.

The number of records is non-uniformly distributed
among variables. As shown in Fig. 1, we used 30× 30 heat
maps to show the distribution of branch execution count in the
application libjpeg-turbo. The distribution of the number
of records among variables is also indicated since the number
of records is equal to the branch execution count. We can see
most branches are rarely executed, while several branches are
frequently executed, which reveals a non-uniform distribution.
Moreover, the distribution changes a lot for different inputs.

The total number of records is inconstant. We also
observed that the total number of records is different for
different inputs or programs. Moreover, according to our
evaluations of the original MTI in Section V-B, those numbers
have large variances. The reason is that the total number of
records is equal to the total branch execution count, which
changes considerably for different execution paths.

Excessive memory is consumed. We further observed that
MTI consumes a large amount of memory. According to our
experiments in Section V-B, the memory consumption is far
more than the size of 64 KB suggested by AFL (a state-of-
the-art fuzzer that also employs shared memory) [22]. We also
collected a set of timeout test cases from our previous fuzzing.
Their execution time is 0.2 to 3 seconds, which means that they
are executing complex code but not endless loops. As shown
in Table I, the consumption of MTI becomes more excessive

when working on these test cases.
Based on these observations, we discussed the limitations

of existing MTI methods. First, neither SLF nor GREYONE
can efficiently record runtime values of variables. The bitmap
used by GREYONE is especially unsuitable since we do not
know how much space should be reserved for each variable.
For example, AFLplusplus [23] uses a 65536 × 256 bitmap
for similar purposes as MTI, which reserves 256 items for
multiple records of each variable. However, the size of 256 will
both waste much memory and lose many records according to
the aforementioned observations. It is also hard to determine
how much memory should be allocated for the linear array
of SLF. Besides, the scheme of SLF consumes much time
aligning two executions’ records. Second, the excessive mem-
ory consumption is inevitable since MTI attempts to record
concrete variable values. Finally, although memory overhead
is no longer a serious problem, it leads to a low hit ratio of
CPU cache and thus slows down the taint inference [24]. We
summarized these limitations into 3 challenges that seriously
limit the efficiency and scalability of MTI, as follows.

Challenge 1. MTI cannot efficiently record runtime values of
the variables to monitor their changes.

Challenge 2. MTI consumes large amounts of memory record-
ing variables’ runtime values, especially on complex code.

Challenge 3. The memory overhead of MTI leads to a low hit
ratio of CPU cache and thus slows down the taint inference.

Therefore, we need a solution that can improve the effi-
ciency and scalability of MTI while maintaining its accuracy.

III. METHODOLOGY

To address the aforementioned challenges, we proposed an
efficient and scalable MTI method named HashMTI. Below,
we elaborate on the details of this method.

A. Overview

Fig. 2 illustrates the workflow of HashMTI, which contains
two main components: the compile phase for instrumentation
and the main module for taint inference. Static analysis on
LLVM IR is initially performed to obtain information of the
target program. Based on this information, a unique position
in the bitmap is assigned for each variable (i.e., operands



Fig. 2: Overview of HashMTI. The grey shapes denote key
processes of our approach.

of branch instructions) to store their records. Based on the
results of the static analysis and bitmap organization, we
insert instrumentations for our key approaches: the hash record
scheme (see Section III-B) and the DoubleMutation strategy
(see Section III-C).

After the program is instrumented, HashMTI enters the main
module for taint inference. First, similar to Algorithm 1, it runs
the program with a given input to obtain the original record
Record. Then, it mutates each input byte with the coarse-
grained mutator (one at a time). Once a byte is mutated, it runs
the program again to obtain the new record Record

′
. Next, it

uses a heuristic indicator to decide whether to mutate the byte
again with the fine-grained mutator. The execution after the
fine-grained mutation also has a new record Record

′′
. Based

on these records, HashMTI infers which variable is tainted
and depends on the current byte. After the processing on the
current byte, HashMTI goes through the remaining input bytes
and repeats the above processes.

Below, we detail our hash record scheme and DoubleMuta-
tion strategy, which are the key approaches of HashMTI.

B. Hash Record Scheme

Considering the challenge 1, the linked list structure can
be used to allocate appropriate memory for each variable to
store its multiple records. However, the appending operation
is complex, and the runtime memory allocation has extra
overhead. Motivated by the linked list, we further found that
there exist such hash functions that can compute the hash
of a sequence iteratively. Later items of the sequence are
combined with the hash of previous items, which is similar
to the appending operation of a linked list.

Based on the above facts, we propose the hash record
scheme. For each variable to monitor, we regard its runtime
values as an ordered sequence whose items successively arrive
during the program execution. We iteratively compute the
sequence’s hash as the hash record of each variable, whereby

1 whi le ( 1 ) {
2 char c = INPUT BYTE ( fd ) ;
3 // id: assigned position of variable c

4 if (hash_record[id].cnt < hash_record[id].UB) {
5 ++hash_record[id].cnt;

6 old_hash = hash_record[id].hash;

7 updated_hash = HashFunc(c, old_hash);

8 hash_record[id].hash = updated_hash;

9 }
10 i f ( c == 0xD8 )
11 g e t s o i ( fd ) ; / / SOI : s t a r t o f f i l e
12 . . .
13 }

Listing 2: Example of HashMTI’s instrumentations. The code
is from Listing 1, and the instrumentations are highlighted.

Fig. 3: Merkle–Damgard construction.

we can still detect the changes in variable values (according
to the hash checksum) while reducing the space complexity
of MTI to O(1). Therefore, we can efficiently store the hash
records in a bitmap with the space complexity of O(1), thereby
resolving the challenges described in Section II-B.

We further illustrate our scheme with Listing 2. The code is
from Listing 1 and instrumented by HashMTI to compute the
hash record of variable c at line 10. Each time the variable is
used for comparison, its runtime value is used to update the
hash record computed in previous iterations (at lines 6–8 in
Listing 1). When the program exits, the up-to-data hash is the
final hash record of the variable.

Note that not all hash algorithms are suitable for computing
hash records. Most well-known hash functions such as MD5
and SHA1 are not suitable since their computations are not
iterative. The efficiency and collision resistance are also im-
portant for MTI. We summarized 3 crucial properties that a
suitable hash function should possess as follows.

Property 1. The function computes the hash of an ordered
sequence iteratively with O(1) space complexity. It combines
each item of the sequence with the final result one by one
without any information of later items.

Property 2. The function is sufficiently lightweight and easy
to implement with the instrumentation.

Property 3. The function is collision-resistant to sensitively
detect the changes in variable values.

According to these properties, we surveyed existing hash
functions and found that non-cryptographic hash functions
(NCHFs) are especially suitable. The NCHFs are a family
of hash functions that are not considered safe but have



Algorithm 2 DJBX33A hash function

Input: sequence /* runtime values of each variable */
Output: hash

1: hash = 5381 /* 8-byte variable */
2: for each item in sequence do
3: hash = item + hash * 33
4: end for

Algorithm 3 Splitmix64 hash function

Input: sequence /* runtime values of each variable */
Output: hash

1: hash = 0 /* 8-byte variable */
2: for each item in sequence do
3: hash += item
4: hash = hash xor (hash >> 30)
5: hash = hash * 0xbf58476d1ce4e5b9
6: hash = hash xor (hash >> 27)
7: hash = hash * 0x94d049bb133111eb
8: hash = hash xor (hash >> 31)
9: end for

high performance. They are usually constructed following an
iterative scheme, known as Merkle-Damgard construction. As
shown in Fig. 3, it divides the input sequence M into fixed-size
items (m1,m2, ...,ml) and combines them with the internal
state (IV, y1, ..., yl) one by one using a mixing function f
[25]. The space complexity of this process is O(1).

In Table II, we checked 8 common NCHFs according to
previous evaluations [25] [26] [27] [28]. Considering property
1, MurmurHash3 is not suitable since it requires the sequence
length for computations. Considering property 2, Lookup3 is
too complex. In addition, all those functions divide the input
sequence into one-byte items. Thus, when used in HashMTI,
they have to go through each byte of the variable value whose
width is at most 8 bytes on 64-bit machines. For efficiency, we
optimized them by extending their item size to 8 bytes; thus,
they can combine the variable value with their internal states
once and for all. Considering property 3, we accepted most
functions though they have collisions in previous evaluations.
This is because their collisions are negligible for HashMTI
according to the experiments in Section V-E.

We finally selected the optimized DJBX33A and Splitmix64
as the optional hash functions of our scheme (see Algorithm 2
and 3). They are representative and have their own advantages:
the former is one of the fastest functions, while the latter has
better collision resistance.

C. DoubleMutation Strategy

The limitation of the hash record scheme. As mentioned
previously, our hash record scheme can resolve the challenges
described in Section II-B. However, it has limitations along
with its attractive features. For runtime values of each variable,
we can determine their changes only if their hash changes
while the number of them remains the same. Unfortunately,

TABLE II: Properties of non-cryptographic hash functions

Hash Functions Property 1 Property 2 Property 3
Apartow [29] X X X

MurmurHash3 [30] × X X
SuperFastHash [31] X X ×

DJBX33A X X X
One At a Time [32] X X X

Splitmix64 [33] X X X
Lookup3 [34] – × –

FNV [35] X X X
X: possess ×: not possess –: unknow

Fig. 4: Example showing that the number of variable values
decreases due to mutations (based on the code in Listing 1).

the number of variable values often changes due to input
mutations. As illustrated in Fig. 4a and 4b, the fourth marker
in the JPEG header is mutated from 0xffc0 to an undefined
value 0xff3f, which causes the code to exit early. Thus, the
number of operand c’s runtime values decreases from 5 to
4. In this case, although the hash record changes, we cannot
determine whether the runtime values of the variable change.

The situation where the number of variable values increases
after mutations is easy to handle. For each variable, we use
the number of its runtime values before mutations as its upper
bound λ. For the mutated input, we hash only the first λ
runtime values of the variable as its hash record (see line
4 in Listing 2). Thus, we can omit its extra runtime values.
However, the other situation where the number of values
decreases is more common since mutations often break the file
structure and cause the program to exit early [36]. To handle
this situation, we proposed a novel strategy: DoubleMutation.

What is DoubleMutation. As the name implies, the strategy
applies another mutation on the mutated input byte. We
observed that there are far more invalid values than the valid,
and those invalid values are usually handled by a single
program state. Thus, mutating the broken byte again usually
causes no further decrease in the number of variable values. As
illustrated in Fig. 4c, we applied an arithmetical mutation on
the already mutated byte 0x3f, which causes no decrease in
the number of variable values. By comparing the hash records
in Fig. 4b and Fig. 4c, we can determine their changes because
they have the same number of values but different hashes.

The pseudocode of the DoubleMutation is shown in Algo-
rithm 4. At line 10, we perform the additional arithmetical
mutation. At line 11, we set the aforementioned upper bounds
for each variable as a complement to DoubleMutation. At lines



Algorithm 4 HashMTI with DoubleMutation

Input: input, program P and instrumented program P′

Output: br.taint[input] | br ∈ branches(P)
1: SetUpperBound(∞)
2: Record, exec cksum = Execute(P′

,input)
3: for each position pos in the input do
4: input

′
= ByteFlip(input, pos)

5: SetUpperBound(Record)
6: Record

′
, exec cksum

′
= Execute(P′

, input
′
)

7: if exec cksum == exec cksum
′

then
8: . . . /* Applying taint inference like original MTI */
9: else /* DoubleMutation */

10: input
′′

= ArithMutate(input
′
, pos, 0x11)

11: SetUpperBound(Record
′
)

12: Record
′′

, exec cksum
′′

= Execute(P′
, input

′′
)

13: for br ∈ branches(P) do
14: if Record[br].cnt == Record′[br].cnt &&

Record[br].hash != Record
′
[br].hash then

15: br.taint[input] ∪ = {pos}
16: else if Record[br].cnt == Record′′[br].cnt &&

Record[br].hash != Record
′′
[br].hash then

17: br.taint[input] ∪ = {pos}
18: else if Record′[br].cnt == Record′′[br].cnt &&

Record′[br].hash != Record
′′
[br].hash then

19: br.taint[input] ∪ = {pos}
20: end if
21: end for
22: end if
23: end for

13–21, we check the differences between hash records of the
three executions to detect which variable is tainted.

Mutation operand. To maintain the same number of vari-
able values, the additional mutation with a small operand is
fine-grained. However, the operand should not be too small
(e.g., 1), or the effects of input mutations could be concealed
by non-injective functions (e.g., shift operation). Intuitively,
we select the value 0x11, which is not affected by common
shift operations on one byte (e.g., >>4).

When to apply DoubleMutation. We do not apply Double-
Mutation on all input bytes since its additional executions slow
down the taint inference. It is also not worth applying Double-
Mutation if the limitation of the hash record affects only a few
variables. To decide when to apply DoubleMutation, we used
the exec_cksum of AFL as a heuristic indicator (see line 7
in Algorithm 4). It measures the influence of input mutations
on the branch execution count which is equal to the number
of each variable’s runtime values. Thus, we can effortlessly
determine whether a considerable number of variables are
affected, and decide whether to apply the additional mutations.

IV. IMPLEMENTATION

We implemented a prototype of HashMTI with 2.2k lines
of C/C++ and Python code based on the AFL and the LLVM.
Here, we present some of its implementation details.

TABLE III: The configuration of target programs to test.

Subject Version Format #Branches #Testcases
avconv libav-12.3 MP4 129K 557
ffmpeg ffmpeg-4.1.3 MP4 235K 1824
bsdtar libarchive-3.4.0 TAR 15K 1,701
cxxfilt binutils-2.34 ELF 26K 1,297

objdump binutils-2.34 ELF 34K 2,742
readelf binutils-2.34 ELF 11K 6,155
readpng libpng-1.6.37 PNG 4,791 6,284

djpeg libjpeg-turbo-2.0.2 JPEG 2,945 1,060
jhead jhead-3.04 JPEG 745 3,316

infotocap ncurses-6.2 TEXT 6,560 1,453
tcpdump tcpdump-4.9.3 PCAP 14K 10,255
xmllint libxml2-2.9.10 XML 36K 3,498
gif2png gif2png-2.5.13 GIF 386 3,669
pdftops xpdf-4.02 PDF 24K 295
pdfinfo xpdf-4.02 PDF 21K 834
tiff2pdf tiff-4.0.10 TIFF 6,578 993
tiff2bw tiff-4.0.10 TIFF 5,092 1,362
tiffinfo tiff-4.0.10 TIFF 5,212 1,367
base64 coreutils-8.24-lava DATA 527 1,958

who coreutils-8.24-lava DATA 5,705 3,962
md5sum coreutils-8.24-lava DATA 583 2,542

uniq coreutils-8.24-lava DATA 491 412

Based on the LLVM IR, HashMTI analyses each branch
instruction and assigns each of them a unique position in the
bitmap. The bitmap is in the shared memory and its size is the
total number of branches multiplied by the size of the record.
Note that, for efficiency, we compute the hash of both the two
operands’ values as the hash record of each branch instruction.
Thus, we allocate only 3×8 bytes for the record of each branch
instruction, containing the hash value, the number of operand
values (i.e., the branch execution count) and the upper bound.

Moreover, in this paper, we concentrate on the technique of
MTI itself. Since the prototype of HashMTI is implemented
on top of AFL, we cancel the test case generation process of
the fuzzer and leave the taint-guided fuzzing for future works.

V. EVALUATION

In this section, we conduct thorough experiments to evaluate
our work HashMTI. With these experiments, we aim to answer
the following research questions:

RQ1. Compared with the original MTI, how much memory
overhead does HashMTI reduce?

RQ2. Compared with the original MTI, does HashMTI
speed up the taint inference?

RQ3. How efficient is the DoubleMutation strategy?
RQ4. How much does the limitation of the hash record

scheme affect the accuracy of HashMTI?

A. Experiment Setup

Target Programs. We evaluated HashMTI on 18 real-world
programs, including tools and libraries used for processing
various file formats. We also evaluated HashMTI on the
LAVA-M benchmark [16], which has many inserted hardcode
comparisons. The configuration of all subjects is listed in
Table III. Intuitively, the program with more branches is more
complex. Note that the target programs we used are not exactly
the same as in the previous work. More large applications were
tested to evaluate the efficiency and scalability of HashMTI.



Testcases. We ran HashMTI on a set of test cases (i.e., in-
puts of programs) which are collected during previous fuzzing
with state-of-the-art fuzzers and minimized by afl-cmin. Table
III lists the number of these test cases for each subject.

Baseline. Since neither SLF nor GREYONE is open source,
we implemented an original MTI tool as the baseline according
to Algorithm 1, called OrigMTI. We used a 1 GB linear array
for variable value monitoring, which is similar to SLF and
sufficient in our experiments. We did not adopt the scheme of
GREYONE since it loses records and its performance relies on
its closed-source bitmap configurations. In addition, we used
an out-of-the-box DTA tool, the Libdft [17], to further evaluate
our work. We set its maximum execution time is to 2 minutes
and its maximum memory usage to 4 GB.

Performance Metrics. To compare the performance of
HashMTI and OrigMTI, we consider both their memory and
time overhead. We count only the actual usage of OrigMTI’s
linear array since its size of 1 GB is sufficient but not
necessary. The time overhead is evaluated from 3 aspects:
(1) the time of executing the instrumented program once to
evaluate the overhead of monitoring runtime variable values;
(2) the total execution time on each test case to evaluate
the extra time consumption of HashMTI introduced by its
additional executions; and (3) the total taint inference time
of the two tools, including both the overhead of executions
and record analysis. In addition, we evaluate the accuracy
of HashMTI. Since its accuracy could be affected by the
hash collisions and the limitation of the hash record, we
use the collision rate, false negative and recall ratio of taint
reports to measure the losses in its accuracy. Considering the
baseline used in this paper is implemented by ourselves, we
also perform similar experiments as those in previous works
GREYONE and compare the experimental results.

Experiment Environment. The experiments were con-
ducted on a 64-bit machine with 8 cores (2.5 GHz Intel Xeon
Platinum 8269CY), 32 GB of RAM, and Ubuntu 18.04 as the
server OS. We ran each tool on a single core. When measuring
the time consumption, we repeated each experiment 6 times
and computed the arithmetic average to reduce the influence
of other running processes.

B. Evaluating the Memory Overhead (RQ1)

For each MTI tool, Table IV reports its memory consump-
tion on each subject. We can see that HashMTI has low
memory overhead. On 6 subjects, its consumption is lower
than the size of 64 KB suggested by AFL [22]. On average,
it consumes only 0.6 MB of memory. Moreover, we use the
Factor to indicate how many times the memory consumption
of HashMTI is less than that of OrigMTI. As indicated by the
factor1, the consumption of HashMTI is 2 to 594.7 times less
than the average memory consumption of OrigMTI. As indi-
cated by the factor2, the consumption of HashMTI is at most
101,369 times less than that of OrigMTI. The results show
that HashMTI significantly reduces the memory consumption
of original MTI on 21 of the 22 subjects. The reason is that
our hash record scheme reduces the space complexity of MTI

TABLE IV: Memory consumption of HashMTI and OrigMTI.

Subject HashMTI∗ OrigMTI Factor1
OrigMTI Factor2(Avg) (Max)

gif2png 9.04 KB 5.25 MB 594.7 894.9 MB 101369
md5sum 0.01 MB 2.45 MB 245.0 121.3 MB 12130
djpeg 0.06 MB 8.14 MB 135.7 92.1 MB 1535
pdftops 0.54 MB 63.23 MB 117.1 637.2 MB 1180
uniq 0.01 MB 1.17 MB 117.0 39.4 MB 3940
base64 0.01 MB 1.03 MB 103.0 24.8 MB 2480
infotocap 0.15 MB 11.45 MB 76.3 58.6 MB 391
pdfinfo 0.48 MB 27.54 MB 57.4 184.6 MB 385
tiffinfo 0.11 MB 3.13 MB 28.5 34.8 MB 316
avconv 2.95 MB 69.18 MB 23.5 914.7 MB 310
jhead 0.01 MB 0.09 MB 9.0 2.8 MB 280
tiff2bw 0.11 MB 0.81 MB 7.4 73.3 MB 666
objdump 0.77 MB 4.88 MB 6.3 126.1 MB 164
ffmpeg 5.37 MB 32.68 MB 6.1 105.6 MB 20
tiff2pdf 0.15 MB 0.83 MB 5.5 12.3 MB 82
xmllint 0.82 MB 3.04 MB 3.7 78.3 MB 95
readelf 0.25 MB 0.73 MB 2.9 56.9 MB 228
cxxfilt 0.59 MB 1.65 MB 2.8 33.2 MB 56
who 0.12 MB 0.28 MB 2.3 2.5 MB 21
bsdtar 0.34 MB 0.75 MB 2.2 29.1 MB 86
readpng 0.10 MB 0.20 MB 2.0 17.5 MB 175
tcpdump 0.32 MB 0.08 MB 0.3 51.9 MB 162
Avg. 0.60 MB 10.84 MB 70.4 163.3 MB 5731
∗The memory consumption of HashMTI is a constant.

to O(1). On the tcpdump, HashMTI consumes more memory
because its bitmap reserves storage locations for all branches,
though some of them are not executed. Nevertheless, on that
subject, it consumes only 0.32 MB of memory, which is far
less than the maximum consumption of OrigMTI.

Based on the results in Table IV, we can positively
answer RQ1 that HashMTI can significantly reduce the
memory overhead of OrigMTI. Thus, it scales well to
large programs and makes better use of the CPU cache.

C. Evaluating the Time Overhead (RQ2)

We compare the time overhead of HashMTI and OrigMTI
on 9 representative subjects, including both large programs
(e.g., pdftops, ffmpeg and avconv) and small programs
(e.g., LAVA-M). Following Klees’ recommendation [37], we
use the Vargha-Delaney statistic (Â12) to determine the prob-
ability that our work outperforms OrigMTI [38] [39]. We also
use the Factor to measure the performance gain as the mean
time of OrigMTI divided by the mean time of HashMTI.

First, Table V reports the execution speed of the two tools.
Intuitively, the program instrumented by OrigMTI should be
faster since its instrumentations are simpler. However, our
experiments showed the opposite results. All the factors are
greater than 1.00 and all the Â12 values are 1.00, which
indicates the execution speed of HashMTI is always faster.
It achieves a speedup of 1.15X to 2.65X, especially on large
programs. The reason is that HashMTI consumes less memory
and thus can make better use of the CPU cache than OrigMTI.
The results are in agreement with those in CollAFL [24].

Second, Table VI reports the comparison of total execution
time. We can see the factors are lower than those in Table
V, and the Â12 value is smaller than 1.00 on readelf. The
reason is that the DoubleMutation strategy requires additional



TABLE V: Time of executing the instrumented program once.

Subject Tools Average Time(ms) Factor Â12

avconv HashMTI 31.485 2.65 1.00
OrigMTI 83.521 – –

ffmpeg HashMTI 14.411 2.62 1.00
OrigMTI 37.692 – –

pdftops HashMTI 41.350 2.44 1.00
OrigMTI 100.701 – –

djpeg HashMTI 5.561 1.98 1.00
OrigMTI 11.051 – –

objdump HashMTI 9.340 1.73 1.00
OrigMTI 16.204 – –

readpng HashMTI 1.121 1.50 1.00
OrigMTI 1.686 – –

tcpdump HashMTI 1.394 1.27 1.00
OrigMTI 1.783 – –

readelf HashMTI 3.792 1.15 1.00
OrigMTI 4.371 – –

jhead HashMTI 0.498 1.15 1.00
OrigMTI 0.574 – –

TABLE VI: Total program execution time on a test case.

Subject Tools Average Time(s) Factor Â12

avconv HashMTI 74.001 2.26 1.00
OrigMTI 167.305 – –

ffmpeg HashMTI 77.874 1.94 1.00
OrigMTI 151.436 – –

pdftops HashMTI 117.047 1.75 1.00
OrigMTI 205.685 – –

djpeg HashMTI 31.611 1.35 1.00
OrigMTI 42.517 – –

objdump HashMTI 60.469 1.05 1.00
OrigMTI 63.896 – –

readpng HashMTI 5.421 1.16 1.00
OrigMTI 6.317 – –

tcpdump HashMTI 6.605 1.06 1.00
OrigMTI 7.040 – –

readelf HashMTI 16.833 1.01 0.67
OrigMTI 16.972 – –

jhead HashMTI 0.897 1.15 1.00
OrigMTI 1.046 – –

executions on some input bytes and thus introduces extra time
overhead. Nevertheless, the factors are still greater than 1.00,
and the Â12 values are still considerable, which means that
HashMTI is still faster than OrigMTI. On large programs
(e.g., avconv, ffmpeg and pdftops), HashMTI can still
achieve a speedup of 1.75X to 2.26X. The reason is that the
performance improvement of HashMTI due to the better use
of CPU cache is significant enough and the DoubleMutation
strategy is economically applied.

Finally, Table VII reports the comparison of the total taint
inference time. The factors considerably increase compared
with those of the execution time. Especially, on large programs
such as avconv, ffmpeg and pdftops, HashMTI is ap-
proximately 8 to 22 times faster than OrigMTI. On average, it
achieves a speedup of 9 times. This is because OrigMTI spends
much time on loading, aligning and comparing records in the
linear array. It checks all runtime values of each variable when
analyzing the records (see lines 7–12 in Algorithm 1). By
contrast, HashMTI can efficiently leverage a bitmap for stor-
age. Each variable has only one hash record and thus requires
only one time comparison (see lines 14–20 in Algorithm 4).
In effect, the runtime hash computations of HashMTI reduces
the time complexity of the record comparison process to O(1).

TABLE VII: Total taint inference time on a test case.

Subject Tools Average Time(s) Factor Â12

avconv HashMTI 81.389 16.7 1.00
OrigMTI 1364.058 – –

ffmpeg HashMTI 108.879 9.05 1.00
OrigMTI 986.140 – –

pdftops HashMTI 118.067 23.5 1.00
OrigMTI 2782.303 – –

djpeg HashMTI 32.033 14.5 1.00
OrigMTI 462.858 – –

objdump HashMTI 63.019 12.9 1.00
OrigMTI 815.366 – –

readpng HashMTI 5.720 4.98 1.00
OrigMTI 28.491 – –

tcpdump HashMTI 7.547 3.18 1.00
OrigMTI 24.026 – –

readelf HashMTI 17.606 2.52 1.00
OrigMTI 44.356 – –

jhead HashMTI 0.966 3.04 1.00
OrigMTI 2.946 – –

TABLE VIII: The additional execution rates and contribution
rates of the DoubleMutation strategy.

Subject Additional Execution Rate Contribution Rate
Average Maximum Average Maximum

avconv 0.16 1.00 0.04 0.27
ffmpeg 0.40 1.00 0.03 0.29
pdftops 0.52 0.98 0.16 0.75
djpeg 0.40 1.00 0.35 0.90

objdump 0.53 1.00 0.11 0.72
readpng 0.41 1.00 0.29 0.67
tcpdump 0.24 0.82 0.09 0.73
readelf 0.22 0.81 0.03 0.59
jhead 0.18 0.97 0.20 0.99

Thus, the performance of HashMTI is further improved.
According to the above experiments, HashMTI has signif-

icant performance advantages over OrigMTI, especially on
large programs (which have a large number of branches).

From the analysis of Table V, VI and VII, we can pos-
itively answer RQ2 that HashMTI can greatly improve
the efficiency of MTI and scale well to large programs.

D. Evaluating the Efficiency of DoubleMutation (RQ3)

As described in Section III-C, the DoubleMutation strategy
is designed to mitigate the limitation of the hash record
scheme. However, it spends extra time on its additional mu-
tations and subsequent executions. We compute its additional
execution rate and contribution rate to measure its efficiency.
For each test case, the former is the number of additional
executions divided by the number of bytes; the latter is the
number of taint reports that can be found only by the strategy
divided by the number of total reports. Since DoubleMutation
mutates each byte twice at most, the additional execution rate
is no higher than 1.0.

As shown in Table VIII, the average additional execution
rates are no higher than 0.52. This means that the strategy
introduces only about 0.5 additional executions on average.
This is because our heuristic indicator (i.e., the exec_cksum)
activates additional mutations economically. Moreover, the
strategy contributes more than 16% of the taint reports on 4 of



TABLE IX: Hash collision rates of the optimized DJBX33A.

Subject Collision Rates Collision Rates Collision Rates
of Taint Reports of Branches of Testcases

who 0 0 0
avconv 1.27× 10−6 2.92× 10−3 5.02× 10−2

ffmpeg 8.38× 10−6 9.20× 10−3 1.09× 10−1

readelf 1.05× 10−6 2.45× 10−3 3.50× 10−3

jhead 2.00× 10−7 6.09× 10−3 6.00× 10−4

gif2png 5.45× 10−6 6.51× 10−3 2.63× 10−2

base64 0 0 0
pdftops 4.52× 10−6 3.02× 10−2 8.58× 10−1

tiffinfo 8.41× 10−6 1.54× 10−2 4.82× 10−2

tiff2pdf 3.30× 10−7 1.41× 10−3 1.00× 10−3

uniq 0 0 0
tiff2bw 2.50× 10−7 1.45× 10−3 2.20× 10−3

tcpdump 8.30× 10−7 8.77× 10−4 1.40× 10−3

djpeg 3.20× 10−7 4.85× 10−3 6.90× 10−3

infotocap 1.99× 10−6 1.17× 10−2 5.37× 10−2

xmllint 9.92× 10−6 9.63× 10−3 2.35× 10−2

pdfinfo 2.50× 10−7 5.77× 10−3 2.12× 10−2

objdump 1.84× 10−6 5.69× 10−3 3.19× 10−2

md5sum 0 0 0
cxxfilt 1.00× 10−8 6.82× 10−4 1.10× 10−3

readpng 2.00× 10−8 2.77× 10−3 3.00× 10−4

bsdtar 2.50× 10−7 8.19× 10−4 2.00× 10−3

Avg. 2.06× 10−6 5.38× 10−3 5.64× 10−2

the 9 subjects. On djpeg, there are on average 35% of taint
reports that can be found only by the DoubleMutation strategy.
On jhead, it contributed 99% of taint reports at most. Thus,
it greatly mitigates the limitation of the hash record scheme.

From the results in Table VIII, we can positively
answer RQ3 that DoubleMutation is efficient. It helps
detect more taint information while only introducing a
reasonable number of additional executions.

E. Evaluating the Accuracy of HashMTI (RQ4)

As aforementioned, HashMTI is more efficient and scalable
than the original MTI. However, its hash functions may have
collisions that could conceal the changes in variable values.
Moreover, though the limitation of hash records is greatly mit-
igated by the DoubleMutation strategy, it still causes HashMTI
to fail to detect some taint information. Below we evaluate the
influence of these two aspects on the accuracy of HashMTI.

Hash Collision. Notably, the optimized Splitmix64 has no
collisions in our experiments. For the optimized DJBX33A,
Table IX lists its collision rates. In column 2, the proportion
of taint reports that HashMTI fails to detect due to collisions
is only on the order of 10−6. The maximum collision rate is
9.92 × 10−6 which occurs on xmllint, and the average is
2.06×10−6. Especially, no collisions occur on the 4 programs
of the LAVA-M benchmark. Moreover, according to columns 3
and 4, on average only 0.54% of branches and 5.64% of test
cases have had collisions, respectively. Therefore, the hash
collisions are negligible and cause almost no losses in the
accuracy. We employed the optimized DJBX33A as the default
function of HashMTI and used it in all other experiments since
it is simpler and faster than the optimized Splitmix64.

False Negative. The hash collisions and the limitation of
the hash record scheme could affect the accuracy of HashMTI

TABLE X: False negative and Recalldiff of HashMTI.

Subject False Negative Difference of Recall
Average Variance Average Variance

who 0.06 0.005 0 0
avconv 0.07 0.003 2.80× 10−3 0.000308
ffmpeg 0.09 0.003 9.10× 10−3 0.000711
readelf 0.10 0.010 1.79× 10−2 0.003903
jhead 0.10 0.009 2.13× 10−2 0.001621

gif2png 0.12 0.003 3.88× 10−2 0.001878
base64 0.12 0.003 4.02× 10−2 0.003692
pdftops 0.13 0.009 7.38× 10−2 0.019262
tiffinfo 0.15 0.010 1.58× 10−2 0.000268
tiff2pdf 0.16 0.012 1.00× 10−4 0.000005

uniq 0.16 0.023 0 0
tiff2bw 0.18 0.016 7.90× 10−3 0.000910

tcpdump 0.18 0.020 2.74× 10−2 0.010290
djpeg 0.22 0.010 2.88× 10−2 0.008438

infotocap 0.26 0.014 6.95× 10−2 0.003388
xmllint 0.26 0.036 4.52× 10−2 0.004684
pdfinfo 0.26 0.009 2.68× 10−2 0.007069

objdump 0.27 0.050 4.10× 10−3 0.001154
md5sum 0.28 0.035 1.50× 10−2 0.005410
cxxfilt∗ 0.29 0.012 – –

readpng∗ 0.32 0.034 – –
bsdtar 0.38 0.061 4.76× 10−2 0.011887
Avg. 0.19 0.018 2.46× 10−2 0.004244

∗Libdft cannot analyze programs that obtain input data from stdin.

and thus leads to false negatives (compared with original MTI).
Table X reports the average false negative rate of HashMTI
and its variance on each subject. From the results, we can see
the rates are reasonable in general (19% on average). Half of
them are lower than 20%, and most of them (20 of the 22)
are lower than 30%. In particular, on who, avconv, ffmpeg,
readelf and jhead, HashMTI can detect more than 90% of
the taint information found by OrigMTI. The small variances
also indicate that the results are statistically significant.

Recall Ratio. From the perspective of replacing traditional
taint analysis, we further evaluated the accuracy of HashMTI
with a traditional DTA tool Libdft. By respectively comparing
HashMTI and OrigMTI with Libdft, we computed the differ-
ences in their recall ratios of taint reports as follows.

Recalldiff =

∣∣ReportsOrigMTI ∩ReportsLibdft

∣∣∣∣ReportsLibdft

∣∣ −∣∣ReportsHashMTI ∩ReportsLibdft

∣∣∣∣ReportsLibdft

∣∣
(1)

where the ReportsLibdft are the taint information reported
by Libdft, represented by tuples of the input byte offset and
tainted branch instruction.

Table X lists the Recalldiff on each subject. The averages
are all positive numbers due to the aforementioned false nega-
tives of HashMTI. Nevertheless, they are at least one order of
magnitude lower than the false negative rates, and the overall
average is only 2.46 × 10−2. Especially, HashMTI achieves
the same recall ratio as OrigMTI on who and uniq. The
small variances also indicate that the results are statistically
significant. Therefore, HashMTI achieves similar accuracy as
OrigMTI when compared with the traditional DTA tool Libdft.

Similar Experiments as GREYONE. Last but not least,
we perform similar experiments as those in GREYONE [15]



Fig. 5: Proportion of tainted branches reported by HashMTI-
only, Libdft-only and both HashMTI and Libdft.

to evaluate the accuracy of HashMTI. We tested HashMTI and
a DTA tool with the same subjects and input data (see Table
III). Then we counted the number of tainted branches reported
by them, respectively. Note that we use an out-of-the-box DTA
tool Libdft [17] instead of the DFSan [40] used in GREYONE
since the latter relies on our implementations as well.

Fig. 5 shows the proportion of tainted branches reported by
HashMTI and Libdft. The experimental results of HashMTI
are in agreement with those in GREYONE. We can see that
HashMTI recalls most taint reports of Libdft while detecting
more taint information than the DTA tool.

From the analysis of Table IX, X and Fig. 5, we
can positively answer RQ4 that HashMTI maintains
a considerable degree of accuracy, especially from the
perspective of replacing traditional DTA.

VI. THREATS TO VALIDITY

Since the baseline OrigMTI is implemented by ourselves,
we perform similar experiments as those in previous works for
comparisons. We are also eager to compare HashMTI with the
MTI methods used in SLF and GREYONE after they release
their code. Since they both face the challenges described in
this paper, we believe that HashMTI can outperform them.

Besides, the performance improvement of HashMTI could
be insignificant on simple programs. In this case, the overhead
of runtime hash computations could even cause HashMTI to
be slower than the original MTI. Nevertheless, our experiments
showed that HashMTI can significantly speed up the taint
inference on all of the 22 subjects. In particular, HashMTI
scales well to large programs and thus is more practical.

VII. RELATED WORK

A. Static Taint Analysis

Static taint analysis is the static counterpart of DTA. It does
not need to actually run target applications and thus is widely
used to analyze android [41] [42] and IoT [43] applications. It
also has the advantage of computing conservative estimates of
information flows within a program, whereas DTA can only
identify flows that actually occur in observed execution paths
[44]. However, the technique is imprecise. It produces many

spurious results in the presence of constructs such as loops
and aliases. Compared with static taint analysis, HashMTI is
a dynamic experimental approach and thus is more sound and
can detect information flows that static taint analysis cannot.

B. Dynamic Taint Analysis

DTA tags sensitive input data with taint labels and propa-
gates these labels to further variables that are computed based
on the tagged ones. This technique is more precise than the
static taint analysis since it is based on actual executions.
Especially, some DTA tools [17] [40] use byte-level tagging
granularity and thus can identify input bytes that influence
branch conditions or program attack points [45].

However, DTA has heavy overhead for interpreting instruc-
tions and storing taint labels. It also suffers from under-taint
issues caused by implicit data flows [13] and external function
calls. In contrast to DTA, HashMTI is achieved by lightweight
instrumentations. Moreover, it is an experimental approach
that shows true counterfactual causality and thus soundness
by construction [11].

C. MTI-like Techniques Based on Control Flow Features

There are several works that have a similar idea as MTI,
such as FairFuzz [46] and Profuzzer [47]. They systematically
mutate each input byte as well but inferred the relationships
between input and branch conditions based on changes in
control flow features. However, the control flow features are
coarse-grained indicators so that they fail to provide accurate
taint information. They also spend too much time system-
atically mutating each input byte, which is not as effective
as random strategies [20]. In contrast to these techniques,
HashMTI maintains the accuracy of MTI while significantly
improving its efficiency and scalability.

VIII. CONCLUSION

In this paper, we propose an efficient and scalable MTI
method, named HashMTI, which uses the hash of each vari-
able’s values to efficiently monitor their changes and further
improves the performance of MTI. It is mainly made up of two
parts: (1) the hash record scheme to fundamentally reduce the
space complexity of original MTI and (2) the DoubleMutation
strategy to mitigate the limitation of hash record and detect
more taint information. The experimental results show that
HashMTI reduces the space complexity of MTI to O(1),
achieves significant speedups due to better utilization of the
CPU cache and maintains a considerable degree of accuracy.

Since the MTI is suitable for optimizing fuzzing and our
work HashMTI further improves its efficiency, in the future,
we plan to develop a taint-guided fuzzer based on HashMTI.
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