
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 8, AUGUST 2022 1

From Release to Rebirth: Exploiting Thanos
Objects in Linux Kernel

Danjun Liu, Pengfei WangB, Xu Zhou, Wei Xie, Gen Zhang, Zhenhao Luo, Tai Yue, Baosheng Wang

Abstract—Vulnerability fixing is time-consuming, hence, not all
of the discovered vulnerabilities can be fixed timely. In reality,
developers prioritize vulnerability fixing based on exploitability.
Large numbers of vulnerabilities are delayed to patch or even
ignored as they are regarded as “unexploitable” or underesti-
mated owing to the difficulty in exploiting the weak primitives.
However, exploits may have been in the wild. In this paper,
to exploit the weak primitives that traditional approaches fail
to exploit, we propose a versatile exploitation strategy that can
transform weak exploit primitives into strong exploit primitives.
Based on a special object in the kernel named Thanos object,
our approach can exploit a UAF vulnerability that does not have
function pointer dereference and an OOB write vulnerability that
has limited write length and value. Our approach overcomes the
shortage that traditional exploitation strategies heavily rely on the
capability of the vulnerability. To facilitate using Thanos objects,
we devise a tool named TAODE to automatically search for eligible
Thanos objects from the kernel. Then, it evaluates the usability of
the identified Thanos objects by the complexity of the constraints.
Finally, it pairs vulnerabilities with eligible Thanos objects. We
have evaluated our approach with real-world kernels. TAODE
successfully identified numerous Thanos objects from Linux.
Using the identified Thanos objects, we proved the feasibility of
our approach with 20 real-world vulnerabilities, most of which
traditional techniques failed to exploit. Through the experiments,
we find that in addition to exploiting weak primitives, our
approach can sometimes bypass the kernel SMAP mechanism
(CVE-2016-10150, CVE-2016-0728), better utilize the leaked heap
pointer address (CVE-2022-25636), and even theoretically break
certain vulnerability patches (e.g., double-free).

Index Terms—Vulnerability exploitation, transfer weak prim-
itives, kernel security.

I. INTRODUCTION

SOFTWARE vulnerabilities cause severe consequences in
the real world [1], [33]. Among them, kernel vulnera-

bilities have the biggest impact, which can cause privilege
escalation, information leakage, etc. For example, Linux kernel
has more than twenty million lines of code, and its compli-
cated mechanisms and internal functions make vulnerabilities
emerge consecutively. During the past 5 years, 1,306 vulner-
abilities were discovered in Linux kernel [9].

Since fixing vulnerabilities is time-consuming, not all of the
discovered vulnerabilities can be fixed timely. For example, the
continuous fuzz testing platform szbot [11] has exposed more
than 4,000 vulnerabilities in recent years, but nearly 1,000
vulnerabilities have not been fixed yet (up to Jan. 2022). As has
been investigated in [42], it takes an average of 51 days to fix a
bug (over 3,396 fixed bugs), whereas it takes less than 0.4 day
for syzbot to report a new bug. Hence, the Linux community
prioritizes bug fixing based on exploitability. Vulnerabilities
that are regarded as unexploitable in practice would be delayed

BCorresponding author

to patch or even ignored. According to CVEDetails’ [10]
statistics, only 9.5% of vulnerabilities in the last 20 years have
been proved to be exploitable. For the rest, there is a huge time
span from vulnerabilities being found to being fixed. However,
exploits may have already been in the wild.

Security researchers determine a vulnerability’s exploitabil-
ity based on the exploit primitives. Exploitable vulnerabilities
have strong primitives that can read or write arbitrary bytes to
the desired location, while unexploitable vulnerabilities only
have weak primitives that can only read or write limited
bytes of data to unimportant data structures. This greatly
increases the difficulty of writing payload into the kernel and
hijacking kernel control-flow. However, such “unexploitable”
vulnerabilities can become exploitable in the real-world. Under
certain circumstances, it is possible to transform weak exploit
primitives into strong exploit primitives.

In 2021, Nguyen [24] successfully exploited such a weak
heap out-of-bounds write vulnerability (CVE-2021-22555)
that can only write two NULL bytes to the adjacent object.
Using a special vulnerable object (i.e., msg_msg) in the
kernel, they can transform a weak OOB write into a strong
exploit primitive and achieve privilege escalation. However,
their approach is not universal. First, it is pretty difficult for
people to find such a usable vulnerable object to realize a
workable exploit. Specifically, msg_msg is only usable in
the Linux kernel from v5.9 to v5.14, while in other kernel
versions, msg_msg is not usable as it is put into kmalloc-cg-
* cache which is isolated from common vulnerable objects.
Second, exploiting such vulnerable objects is complicated. For
example, different vulnerabilities may overwrite at different
offsets and different caches, which needs different vulnerable
objects to match. Third, other vulnerability types, such as UAF
should also be included. Thus, to find more such vulnerable
objects and use them properly, an universal approach that can
identify them automatically, evaluate their usability, and pair
them with suitable vulnerabilities, is in demand.

In this paper, we name the above mentioned vulnerable
object as the Thanos object and propose an versatile strat-
egy to transform weak exploit primitives into strong exploit
primitives based on Thanos objects. Using the heap pointer
in the Thanos object, we can control the release of the
memory that the heap pointer points to. We leverage the heap-
related use-after-free (UAF) vulnerability and the slab out-
of-bounds (OOB) write vulnerability as two typical scenarios
to illustrate the exploitation of Thanos objects. For a common
unexploitable vulnerability with weak primitives, it can only
write limited bytes of data at a fixed offset without other
harmful behaviors. However, using a Thanos object that has
a heap pointer at exactly the same offset, we can trigger



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 8, AUGUST 2022 2

the UAF write or the OOB write to make the heap pointer
point to another heap chunk (which already has a pointer
pointing to it). In this way, we create a vulnerable overlapped
situation where two pointers point to the same chunk. Then, we
construct two release paths to free the overlapped chunk twice
and use a victim object and a spray object to take up the chunk,
respectively. Using the traditional heap spraying technique [5],
the spray object can write full length and arbitrary values
to craft the victim object, leading to control-flow hijacking
and privilege escalation. This transformation can break the
limitation of write length and write value. To sum up, by using
Thanos object to release an overlapped memory twice, we can
maximize our write capacity and make rebirth come true.

However, to implement the above-mentioned approach, we
have to overcome three challenges. First, is to automatically
identify Thanos objects from the Linux kernel. Different
vulnerabilities may write at different offsets. For example,
some OOBs write the first few bytes of the adjacent object,
while some UAFs write the middle bytes of the freed object.
Thus, we should search for as many Thanos objects as possible
to satisfy the needs of different vulnerabilities. Second, is
to evaluate the usability of the identified Thanos objects.
Different Thanos objects have different heap pointers, and the
allocation paths, as well as the release paths, are also different.
The higher complexity in exploiting a Thanos object, the lower
usability it has. Third, is to pair vulnerabilities with suitable
Thanos objects. The heap pointer of the Thanos object should
be able to be overwritten by the vulnerability capability and
we should pair the vulnerability with a high usability Thanos
object based on their structure and characteristics.

To overcome the above challenges, in this work, we propose
a general approach to automatically identify Thanos objects
and leverage them to transform weak exploit primitives into
strong exploit primitives. We develop a tool named TAODE,
standing for ThAnos Object DiscovEry, based on LLVM static
analysis. First, it applies backward inter-procedural control-
flow analysis and data-flow analysis to identify all Thanos
objects in the kernel. Then, it collects relevant constraints to
evaluate the usability of the identified Thanos objects. Finally,
it pairs appropriate Thanos objects to corresponding kernel
vulnerabilities. Using this tool, we show that Thanos objects
are pervasive in the kernel (Linux, FreeBSD, XNU) and useful
in real-world vulnerability exploitation.

In summary, this paper makes the following contributions.
• We present a versatile exploitation strategy using Thanos

objects to transform weak exploit primitives into strong
exploit primitives. Our approach can exploit a UAF vulner-
ability that does not have function pointer dereference and
an OOB write vulnerability that has limited write length
and value. Besides, our approach can sometimes bypass the
kernel SMAP scheme by controlling more kernel space to
place ROP chain, better utilize the leaked information (e.g.,
ordinary heap pointer), and even theoretically break certain
vulnerability patches (e.g., double-free).

• We implement a tool named TAODE based on LLVM static
analysis. It can automatically search for available Thanos
objects in the kernel and pair vulnerabilities with suitable
Thanos objects according to the usability.

• We demonstrate the ability of TAODE in searching Thanos
objects from real kernels (Linux, FreeBSD, XNU). We
also validate our exploitation strategy using 20 real-world
vulnerabilities with the identified Thanos objects.

II. BACKGROUND

A. Kernel Memory Management

Linux kernel uses buddy system to manage physical mem-
ory pages. Buddy system allocates memory in units of page.
However, most kernel structures need memory of less than one
page. The slab allocator further divides a page into smaller
objects, whose sizes are in units of bytes, like 8, 16, 32, etc.
Basically, each slab cache is a linked list of slabs and each
slab is an array of objects with similar sizes. Objects in the
same slab cache are likely to be located in adjacent spaces.
The heap spraying technique is exactly based on this principle.
Objects in different slab caches are isolated in a sense, which
means by leaking one slab’s starting address, we cannot infer
another different slab’s starting address. When a vulnerable
object locates in a slab cache that has less important data to
corrupt, we can use the Thanos object to transform it into
another cache that has abundant useful objects.

B. Weak vs. Strong Exploit Primitive

Exploit primitives are machine states that violate security
policies at various levels and indicate an attacker could get
extra capabilities beyond the normal functionality provided
by the original program [37], which is the foundation of
generating an effective exploit. Exploit primitive includes read
and write exploit primitive. Read primitive is used to leak key
information, such as kernel function address and other useful
pointers, and write primitive is used to hijack kernel control-
flow or modify kernel credential.

Read exploit primitive contains two characteristics. First,
is the number of bytes it can read. If it can only read less than
4 bytes for one time or for several times in total, we regard it
as a weak read primitive. As we know, at least 4 bytes of data
are needed to bypass important mitigation in x86-64 kernel,
like KASLR [23], for the higher 4 bytes of kernel address
are fixed. Otherwise, if it can read arbitrary bytes of data as
we control, we treat it as a strong read primitive. Second, is
the significance of the leaked data. If the leaked data makes
no sense (not secret information, like a cryptographic key) or
does not contribute to mitigation bypassing or data crafting, it
is treated as a weak read primitive. In contrast, if it can leak
critical information, like function address and heap address,
we treat it as a strong read primitive.

Write exploit primitive contains three characteristics. First,
is the value it can write. Sometimes, a vulnerability only
allows writing NULL value or limited value, so we treat it
as a weak write primitive. On the other hand, if it can write
arbitrary value, we treat it as a strong write primitive. Second,
is the number of bytes it can write. Writing more bytes is
useful for placing malicious payload, like the ROP chain [36],
an address sequence of code pieces to execute malicious code
against the presence of executable space protection [35]. If
it can only write less than 4 bytes of data for one time
or for several times in total, we treat it as a weak write



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 8, AUGUST 2022 3

Before trigger UAF

(a) Exploitation through UAF

vul obj

ptr fptr

obj A

spy obj
After trigger UAF

fake ptr fake fptr

fake obj A

vul obj

Before trigger OOB write

(b) Exploitation through OOB write

vul obj

ptr fptr

obj B
After trigger OOB write

vtm obj

vul obj

fake ptr fake fptr

fake obj B

vtm obj

Before manipulate memory layout

(c) Versatile exploitation strategy 

overlapped obj (arb size)

spy obj
After manipulate memory layout

fake ptr fake fptr

fake obj

vtm obj

ptr1

ptr2

A

B

①

②

Fig. 1: Traditional exploitation techniques on UAF and OOB write, and a versatile exploitation strategy for both.

primitive. Third, is the location it can write. Writing important
targets (such as function pointer, heap pointer, and kernel
credential) can contribute to exploitation. Forging function
pointer can help us to bypass mitigation mechanisms and
hijack the control-flow, like tty_operations->ioctl
and tty_struct->ops. Forging heap pointer can help
us to place exploit payloads into memory or bypass
some data checks in the execution path of the exp, like
msg_msg->next. And forging kernel credentials can help
us escalate privilege, like cred->uid. If it cannot overwrite
these important data, we treat it as a weak write primitive.
These important data are stored in kernel structures, which
may locate in different caches.

In this paper, we focus on the write primitives as they are
more harmful and can be easily turned into read primitives via
an elastic object [4]. We use the above 3 write characteristics
to judge whether a write primitive is weak or strong.

C. Traditional Exploitation Techniques

In this section, we use the UAF and OOB write vul-
nerabilities as examples to introduce traditional exploitation
techniques and their limitations. In this paper, we do not focus
on how to bypass kernel mitigation mechanisms, because there
are many papers that have already proposed related solutions
[6], [12], [13], [15], [39].

1) Exploitation through UAF: As Fig. 1 (a) depicts,
given a UAF vulnerability, we first find a function pointer
fptr in the vulnerable object (i.e., vul obj, the object that
is accessed after being released) or in an object A pointed
to by a pointer ptr from the vulnerable object. Then we
find an execution path that can dereference fptr. After the
vulnerable object is released in the UAF, we use a spray object
(spy obj) to overwrite the vulnerable object with crafted
data, consequently, the function pointer fptr is tampered and
points to malicious code. Finally, we hijack the control-flow
by dereferencing the tampered function pointer.

If the vulnerable object in a UAF does not contain a function
pointer or there is no execution path to dereference the
function pointer, the UAF is regarded as having a weak exploit

primitive. Since it cannot successfully tamper with the function
pointer, the traditional exploitation technique is unworkable.
Fig. 2 shows a UAF vulnerability (CVE-2021-26708) with
a typical weak primitive that has limited write ability.
After virtio_transport_destruct() has released
the structure virtio_vsock_sock (line 4), function
virtio_transport_notify_buffer_size()
can still access this structure. Consequently,
a UAF write occurs (line 12) when function
virtio_transport_notify_buffer_size() writes
to the freed object vvs->buf_alloc. However, the
written value is checked to be no greater than 0xffffffff
(line 9). Since buf_alloc is at offset 40 of structure
virtio_vsock_sock, we can only write 4 bytes at
offset 40 of the freed structure virtio_vsock_sock,
which belongs to the kmalloc-64 slab. As structure
virtio_vsock_sock does not have a function pointer,
there is no function pointer dereference in any execution
path. In summary, this UAF vulnerability can only write
4 bytes to the insignificant freed chunk and does not have
function pointer dereference, so it is categorized as a weak
exploit primitive. Moreover, in the kmalloc-64 slab that the
vulnerable object belongs to, we cannot find both a suitable
spray object and a victim object. Thus, traditional exploitation
techniques fail to exploit this vulnerability.

2) Exploitation through OOB write: As depicted in Fig.
1 (b), given a vulnerability with OOB write, we first find a
suitable victim object (vtm obj) that is located in the same
cache as the vulnerable object (vul obj), which is accessed
out of bounds. The victim object must contain a function
pointer or a data pointer ptr that points to an object B that
contains a function pointer (fptr). Similarly, there should be
an execution path that can dereference fptr. By elaborately
manipulating the kernel memory layout, the victim object
can be placed next to the vulnerable object. Then we trigger
the OOB write to overwrite the victim object and tamper
fptr. Finally, we hijack the control-flow by dereferencing
the tampered function pointer fptr.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 8, AUGUST 2022 4

1 void virtio_transport_destruct(struct
↪→ vsock_sock *vsk){

2 struct virtio_vsock_sock *vvs = vsk->trans;
3 ...
4 kfree(vvs);
5 }
6 void virtio_transport_notify_buffer_size(

↪→ struct vsock_sock *vsk, u64 *val){
7 struct virtio_vsock_sock *vvs = vsk->trans;
8 ...
9 if ( *val > VIRTIO_VSOCK_MAX_BUF_SIZE) //

↪→ VIRTIO_VSOCK_MAX_BUF_SIZE == 0
↪→ xFFFFFFFFUL

10 *val = VIRTIO_VSOCK_MAX_BUF_SIZE;
11 ...
12 vvs->buf_alloc = *val; // UAF write
13 ...}

Fig. 2: CVE-2021-26708, a UAF vulnerability with a weak
primitive that can only write 4 bytes.

It is common to find that some OOBs can just write
specific values or limited bytes. The former makes it unable
to control the victim object’s content, and the latter makes
it hard to find a suitable victim object that contains a func-
tion pointer. These two weak exploit primitives make the
traditional exploitation technique fail again. Fig. 3 shows an
OOB vulnerability (CVE-2021-22555) with a weak primitive.
In xt_compat_target_from_user(), user can control
struct target in the kernel (line 2), then it calculates an
alignment number pad at line 5. An OOB write occurs when
filling pad NULL bytes at the end of the object (line 7).
This vulnerability cannot write any significant data except two
NULL bytes to the adjacent object. Thus, it is a weak exploit
primitive that can’t be exploited with traditional techniques.

1 void xt_compat_target_from_user(struct
↪→ xt_entry_target *t, void **dstptr,
↪→ unsigned int *size){

2 const struct xt_target *target = t->u.
↪→ kernel.target;

3 int pad;
4 ...
5 pad = XT_ALIGN(target->targetsize) - target

↪→ ->targetsize;
6 if (pad > 0)
7 memset(t->data + target->targetsize, 0,

↪→ pad); // OOB write
8 ...}

Fig. 3: CVE-2021-22555, an OOB write vulnerability with a
weak primitive that can only write two null bytes.

3) A versatile exploitation strategy: To sum up, if UAF
has no function pointer dereference in the vulnerable object, or
OOB has limited write value and write length, we treat them
as weak exploit primitives. Traditional exploitation techniques
cannot exploit these weak primitives to escalate privilege.

To overcome the limitations mentioned above, we propose
to construct a versatile strong exploit primitive. As depicted
in Fig. 1 (c), we first manipulate two pointers pointing to
two objects (A, B) that are overlapped in the same memory
space. Next, we release object A with one pointer and use
a victim object (vtm obj) to take it up by memory re-
allocation (see ➀). The victim object should have a function
pointer or a data pointer that points to another object that
contains a function pointer (fptr). Then we release object
B with the other pointer and use a spray object (spy obj)

to overwrite the victim object with crafted data (see ➁). The
function pointer fptr in the victim object would be tampered
to fake fptr. Finally, we dereference the tampered function
pointer and hijack control-flow. In this strategy, we can decide
the size of the two overlapped objects, thus we can choose a
suitable victim object of any size we want. This makes up for
UAF’s lacking function dereference in the vulnerable object.
Meanwhile, we can use heap spraying to craft a whole object
with arbitrary value, which breaks the limitation of OOB’s
write value and write length.

It is very common that some exploit primitives can only
write limited bytes of data to insignificant objects, namely
weak primitives. The nature of kernel exploitation from vulner-
ability to privilege escalation is a process of transforming weak
exploit primitives into strong exploit primitives. To realize
the above-mentioned versatile exploitation strategy, a special
object (we call it the Thanos object) plays a significant role.
A Thanos object contains a heap pointer and a releasing
path to release the memory pointed to by the heap pointer.
By corrupting the heap pointer to point to another existing
object, we can create a vulnerable overlapped state where two
pointers point to the same object. In the following sections,
we will introduce how we use Thanos objects to transform
weak primitives into strong primitives with the examples of
UAF and OOB write.

III. TRANSFER WEAK PRIMITIVES TO STRONG
PRIMITIVES VIA THANOS OBJECTS

A. Thanos Object

To realize the versatile exploitation strategy, we need to use
Thanos object in kernel to construct a vulnerable overlapped
state that two pointers point to the same object, so that we
can release two pointers, respectively, to tamper a function
pointer by heap spraying, and finally hijack the control-flow.
A Thanos object should meet the following requirements.
• A heap pointer. A Thanos object always contains a heap

pointer, which is used to be overwritten to point to another
existing object to form a vulnerable overlapped state.

• An allocation path. It is an execution path through which
we can control the allocation of this Thanos object. If the
exploit primitive is UAF write, we can allocate a Thanos
object to take up the vulnerable object. If the exploit
primitive is OOB write, we can allocate a Thanos object
right after the vulnerable object. Since in the userspace we
usually use a syscall to do the exploit, an allocation path
should start from a syscall and ends with the allocation site
of a Thanos object.

• A release path. It is a path that starts from a syscall
to release the heap chunk pointed by the heap pointer in
the Thanos object. Only by releasing the overlapped object
twice with different pointers can we use a victim object and
a spray object to take it up and hijack the control-flow.

B. Constructing Vulnerable Overlapped State

First, we assume the vulnerability can write at a specific
offset of a freed object (in UAF) or an adjacent object (in
OOB). As illustrated in Fig. 4, we find a Thanos object that
is in the same cache as the vulnerable object. It owns a heap



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 8, AUGUST 2022 5

A

ptr1

Before trigger UAF/OOB write

After trigger UAF/OOB write

B

Thanos obj

fake ptr1

ptr2

A B

ptr2

overlapped obj

UAF/OOB write

Fig. 4: Transform a weak exploit primitive into an overlapped
state using a Thanos object.

pointer ptr1 at the offset that the vulnerability can overwrite.
The heap pointer points to an object A. After that, we apply
heap spraying techniques to let the Thanos object take up
the vulnerable object in UAF or the adjacent object in OOB.
Then we find another object B that is already pointed to by
an existing pointer ptr2 in the kernel. Finally, we trigger
the UAF write or the OOB write to tamper ptr1, making it
point to B as well. As a result, we succeed in constructing a
vulnerable overlapped state where two pointers point to the
same object. We can now perform the versatile exploitation
strategy mentioned above to escalate privilege.

Both CVE-2021-26708 in Fig. 2 and CVE-2021-22555 in
Fig. 3 can be exploited using a Thanos object. For CVE-2021-
26708, we can transform a kmalloc-64 UAF into an overlapped
state in kmalloc-4096, which would have both a useful victim
object and a spray object to perform exploitation. For CVE-
2021-22555, we can transform a limited OOB write into an
overlapped state, which would have no limitation on write
value and write length. This is because we can use a spray
object to write arbitrary value and whole length to craft the
victim object.

IV. TECHNICAL APPROACH
A. Identify Thanos Objects from the kernel

Based on the requirements of the Thanos object, we first
identify Thanos object candidates with heap pointers. Then
we explore the allocation path starting from an allocation call
site. Finally, we explore the release path starting from a release
call site. The whole workflow is depicted in Fig. 5.

1) Identify Thanos object candidates: We mark kernel
objects that contain heap pointers as Thanos object candidates.
There are mainly two problems in identifying Thanos object
candidates, recognizing heap pointers and nested structures.
As our approach is based on LLVM intermediate represen-
tation (IR), specific pointer types are not clearly labeled.
For example, there are several types of pointers, such as
stack pointers, heap pointers, and function pointers. When
we compile source code into LLVM IR, most definitions
of pointers are indistinguishable, like i8*. Although some
substructure pointers may have substructure name ahead, like

Thanos obj

rp

control-flow

data-flow

syscall_A
p

p'

syscall_B

rp   = kmalloc(size) kfree(   p'   )

root privilege error-handling

alloc path
release 

path

➊

➋

➌

heap 
pointer

alloc site release site

Fig. 5: The illustration of inter-procedural backward control-
flow analysis and data-flow analysis. The kmalloc() and the
free() are representatives of allocation and release functions
(see Table I). The data-flow analysis starts from the return
pointer (rp) of the allocation function and the release pointer
(p′). We should avoid paths that require root privilege or pass
an error-handling branch.

struct.msg_msgseg*, indicating they are heap pointers,
other pointers like i8* could be heap pointers too. We mark
the objects as candidates as long as they contain pointers.

In the kernel, some objects may have nested structures. We
concentrate on two types of nested structures. First, if a parent
structure contains a substructure that has a heap pointer and
they are in the same slab, we treat the parent structure as a
Thanos object candidate; Second, if a parent structure contains
a pointer that points to a substructure and the substructure
contains a heap pointer, we treat the substructure as a Thanos
object candidate. For the former, we can directly tamper with
the heap pointer in the parent structure. However, for the latter,
if we use the parent structure as a Thanos object, we have
to first write the substructure pointer and then craft a fake
substructure to tamper with the heap pointer. If an exploit
primitive allows us to craft a structure, we may find another
easier exploitation way. Thus, we suppose that a weak exploit
primitive does not have such ability and we do not consider
the parent structure of the latter case as a Thanos object.

2) Explore allocation path: To control the allocation of
a Thanos object, we should explore its allocation path. As
Fig. 5 illustrates, we first locate all allocation function call
sites. There are two representatives of allocation functions on
the heap, kmalloc() and kmem_cache_alloc() (Other
allocation functions we used are listed in Table I). The former
allocates slab on the general cache while the latter allocates
slab on the special cache. As has been stressed, the vulnerable
object and the Thanos object should be on the same cache.
Although most vulnerable objects are on the general cache,
we still have to record all Thanos objects on the special cache
because the kernel may call find_mergeable() to reduce
memory fragmentation by merging objects. Notably, Thanos
objects whose heap pointers point to special cache should be
excluded.

Then, we perform backward inter-procedural control-flow
analysis to explore the allocation path. We start from allocation
function call sites and walk backward along the control-flow



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 8, AUGUST 2022 6

Allocation

kmalloc(); kzalloc(); kcalloc();
kvzalloc(); kmalloc_node();

kzalloc_node(); kcalloc_node();
kmalloc_array(); kmalloc_array_node();
kmem_cache_alloc(); kmem_cache_zalloc();

kmem_cache_alloc_node()

Release kvfree(); kfree(); kzfree();
kmem_cache_free()

TABLE I: The allocation and release functions we used in
Linux kernel.

graph. If we can reach a syscall, it means we can use this
syscall to control the object allocation. Meanwhile, we should
ensure that this path does not require root privilege. Allocation
function call sites that are not reachable from a syscall or
require root privilege are excluded.

Finally, we perform forward inter-procedural data-flow anal-
ysis to obtain the object type we allocate. We start from the
return pointer of the allocation function call sites and walk
along the data-flow graph to collect the instructions that use
the pointer and its alias as operands. We call these instructions
use points. Some instructions like getelementptr and
bitcast can reveal object types. The getelementptr
instruction is used to get the address of a structure field
member and perform address calculation but it does not
access memory. The bitcast instruction is used to transform
structure type. By recording the object type, the allocation
function call site, the cache type, and the syscall, we can easily
craft exploits. Objects that do not have a feasible allocation
path will be excluded from Thanos object candidates.

3) Explore release path: To control the release of the
memory pointed to by the heap pointer in a Thanos object,
we should explore its release path. As Fig. 5 depictes, we
first locate all release function call sites. There are two kinds
of release functions, kfree() and kmem_cache_free(),
which release slab on general cache and on special cache,
respectively. Then we perform backward inter-procedural
control-flow analysis to explore the release path. We start from
a release function call site and check if we can reach a syscall.
If we cannot reach a syscall or the release path requires root
privilege, the release function call site is excluded.

Then, we perform backward inter-procedural data-flow anal-
ysis to figure out where the release pointer comes from (i.e.,
the source). If the release function is kfree(), the first
parameter is the release pointer. We start from the release
pointer and walk backward along the data-flow graph to record
all potential sources. The following situations should be taken
care of. (1) For a constant, a NULL pointer, a value from
the getelementptr instruction, or a return value from an
allocation function, we record it as a potential source. This is
because these instructions might be the start points of a value.
(2) For an instruction such as phi, select, icmp, binary
operator, unary instruction, or call site to an ordinary function,
we recursively traverse its operands to find the real sources.
(3) For a formal argument or an instruction, like bitcast
or load, we record it as a potential source and recursively
traverse its pointer operand.

After collecting all potential sources of the release pointer,
our next step is to determine that the release pointer is loaded

from one Thanos object candidate. LLVM IR usually uses
one getelementptr and one load instruction to acquire a
field pointer from a structure. If we find a getelementptr
instruction followed by a load instruction when traversing
potential sources, we regard it as the real source of the release
pointer and record the source structure and the offset of the
field pointer. After filtering out Thanos object candidates that
do not have release paths, we can finally record the detailed
information of the remaining Thanos objects, including the
release function call site, the syscall, the object type, the
relative getelementptr instruction, and the offset of the
field pointer.

Two issues should be resolved when identifying the release
path. Error-handling branches. The kernel uses the error-
handling branches to deal with errors, which may release the
buffer, dump the error context, and return an error code. If
the release path of a Thanos object passes an error-handling
branch, then we cannot deterministically control the release
anymore. This will make our exploitation unstable or even fail.
We identify the error-handling branches by the branch label
such as error, exit, and fail in a basic block, so that we
can exclude them automatically when performing backward
control-flow analysis.
Multiple release paths. When there is more than one path to
release the same field pointer from the same Thanos object,
we should track and record all release paths. As some release
paths may implicitly pass error-handling branches, we would
miss some true positives if we just track one release path.

B. Evaluate the Usability of Thanos Objects

We evaluate the usability of a Thanos Object by collecting
the constraints of its field members. The higher complexity of
the constraints, the lower usability of the Thanos object. When
we tamper the heap pointer in a Thanos object, its adjacent
field members can be overwritten as well, which can bring in
side effect when releasing the heap pointer. We mainly focus
on two field member types that tend to cause side effects.

Data access. If the field member is a pointer, some instruc-
tions on the release path may read the content pointed to by
it. If the member pointer is falsely overwritten to point to
an invalid memory address, it can cause general page fault
(GPF) or even kernel panic. Even if we tamper the field
member to be a valid user space address, it can lead to a
crash when accessing user space directly from kernel space
because the kernel is acquiescently protected by the supervisor
mode access prevention (SMAP) scheme [34]. In addition, the
member pointer may also point to nested structures, which
makes it harder to craft the data (discussed in Section VI-B3).

Condition check. If the field member is data, some instruc-
tions on the release path may check the field member to decide
which branch to execute. If we falsely craft the field member,
the kernel may choose the wrong branch and the expected
release site will be missed. Then we cannot perform further
exploitation. This type of field member could be a flag or a
constant that indicates some kernel functionality.

Thus, it is necessary to collect all the data accesses and
condition checks of the field members of a Thanos object on
the release path to evaluate the complexity of the constraints.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 8, AUGUST 2022 7

Thanos obj control-flow

data-flow

p syscall_B

release site

[+] msg_msg                        Sample record
[0, 8): [0, 8) = k1, [16,24) != Arg1
[32, 40): [32, 40) = k1, [16, 24) = Arg1, [24, 32)>=Arg2
[40, 48): [16, 24) = Arg1

f1 f2

check

access

Fig. 6: Identifying filed member constraints. f1 denotes the
field member flows into a compare instruction (condition
check). f2 denotes the field member points to a substructure
and it is accessed on the release path (data access).

We perform forward data-flow analysis starting from Thanos
objects to identify the constraints. For each field member,
LLVM IR uses a getelementptr instruction and a load
instruction to get it from a Thanos object. We can trace the
data-flow to find all of its use points. There are four types of
use points that we should further analyze.

• Common instructions, like getelementptr, binary op-
erator, unary instruction, select, and phi, we recursively
traverse their destination operands to find where they flow
to.

• Call instructions, we follow up its callee function and
analyze the corresponding formal argument to trace more
use points.

• Load instructions, which loads a value from a pointer. We
treat it as an access point if it is on the release path. If it
is the first load instruction, it means it gets a field member
directly from one Thanos object. Otherwise, it means there
exist nested accesses (discussed in Section VI-B3).

• Compare instructions, like icmp, we treat it as a check
point if it is on the release path. If the first operand of icmp
instruction originates from a Thanos object, we then perform
backward data-flow analysis to find the source value of the
second operand. Using the predicate and the source value,
we can represent the constraint of the field member.

Finally, we use unified expressions to depict the constraints
of a Thanos object, which is beneficial to pairing vulnera-
bilities with suitable Thanos objects. As Fig. 6 shows, there
are mainly two expression types. First, if the field member
is a kernel pointer and it does not appear in a compare
instruction, we label it as an access point and then figure
out if it points to nested structures. Only when there exists a
nested access instruction exactly on the release path, can we
label it pointing to nested structures. We use the expression
(off | kn) to represent such a constraint, where off denotes
the offset of a field member in the Thanos object, and kn
denotes that it is a kernel address and points to n layers of
nested structures. Second, if the field member appears in a
compare instruction, we use the expression (off | range) to

represent the constraint, where range denotes the range that
the field member has to satisfy to reach the release site. For
example, “[0, 8) == NULL” means that the first 8 bytes of a
Thanos object should equal NULL. If the field member has a
specific range, it would be easy for us to craft. However, if
the field member is a kernel pointer, we should place a valid
kernel address or even craft the memory area pointed to by
the pointer, which is more difficult.

C. Pairing Vulnerabilities with Thanos Objects

To pair the vulnerabilities with usable Thanos objects, we
should extract the capability of the vulnerability. Recall that
our target vulnerabilities are UAF which has no function
pointer dereference and OOB write which has limited write
length or write value, so we focus on the write capability of
UAF and OOB.

First, we figure out which cache type the vulnerable object
belongs to by pinpointing the allocation site of the vulnerable
object. This is important because the Thanos object can be
overlapped with or adjacent to the vulnerable object only if
they are in the same cache. Then we debug the vulnerability to
analyze its write capability when triggering the vulnerability.
There are three factors that should be considered: (1) the
offset where it can write in the vulnerable object (UAF) or the
adjacent object (OOB), (2) the write length, and (3) the write
value (i.e., arbitrary or limited value). We use a formal expres-
sion (V Cache, [(off1, len1, val1), ..., (offn, lenn, valn)]) to
represent the write capability, where V Cache indicates the
cache type, offi, leni and vali represent the write offset, the
write length, and the write value, respectively. For example,
the write capability of CVE-2021-26708 can be represented
as (kmalloc− 64, (40, 4, arb)), which indicates it can write 4
arbitrary bytes at offset 40 of a slab from kmalloc-64 cache.
The write capability of CVE-2021-22555 can be represented as
(kmalloc−4096, (0, 2, NULL)), which indicates it can write
2 NULL bytes at the front of a slab from kmalloc-4096 cache.
Notably, one vulnerability may have several write offsets.

With the expression of Thanos objects and vulnerabilities
presented above, we can pair vulnerabilities with Thanos
objects. Given a vulnerability, we first filter out Thanos objects
that do not share the same cache with the vulnerable object.
Then we check the write capability of the vulnerability to find
whether it can overwrite the heap pointer of the remaining
Thanos objects based on the expressions. This can further
narrow down the Thanos objects useful for exploitation. Fi-
nally, we check if the vulnerability will bring side effects
when overwriting the field members of the Thanos objects.
This can provide supplemental information for evaluating the
complexity of exploitation.

There are two situations that we should pay attention to.
First, if the vulnerability can only write limited value like
NULL bytes, we should ensure that it can overwrite just one
or two bytes of the 8-byte target heap pointer. Recall that the
key of our exploitation approach is to tamper with the heap
pointer to point to another overlapped object. By spraying
many objects in the kernel memory and changing just one
or two bytes of the heap pointer (the least significant bytes
at best), we can make the heap pointer point to a certain



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 8, AUGUST 2022 8

Algorithm 1 Pairing Vulnerability with Thanos Object
Input: V Cache: The cache of the vulnerable object;

Cap: Capability set of 3-tuple <off, len, val>;
STha: Set of all Thanos objects

Output: S: Set of the matched Thanos objects
1: Procedure MATCHVULTHA(V Cache, Cap, STha)
2: S = ∅
3: for all ThaO r1 using V Cache in STha do
4: Ap = heap pointer offset in r1
5: for (offv , lenv , valv) in Cap do
6: for offt in Ap do
7: if (valv is limited) && (valv is not hptr) then
8: if (offv ≤ offt) && (offt+2 ≤ offv+lenv) then
9: continue

10: if (offv ≤ offt) && (offt ≤ offv+lenv) then
11: S = S ∪ r1
12: return S

object by chance and then perform further exploitation. In
practice, by elaborately arranging memory layout, this chance
is acceptable. However, if the vulnerability destroys more than
two bytes of the heap pointer, the chance of hitting another
object will be very low. Because the kernel heap address is
not predictable and we cannot write an arbitrary value to craft
the heap pointer. Second, if the vulnerability can write an
arbitrary value, we can first leak the address of the overlapped
object to make the exploitation deterministic. There are several
approaches to leaking the address. For example, we can use
other information leak vulnerabilities or elastic objects [4].
Sometimes a kernel warning can reveal kernel addresses, too.
However, this is out of the research of this paper.

We design an automated algorithm to pair a kernel vulner-
ability with suitable Thanos objects. As Algorithm 1 shows,
the algorithm inputs include the cache name of the vulnerable
object (V Cache), the capability of the vulnerability (Cap),
and the set of all Thanos objects (STha). The output is a
set of the matched Thanos objects. First, we filter out the
objects which are not in V Cache (Line 3). Then we traverse
the vulnerability capability (Line 5) and the offset set of heap
pointers in one Thanos object (Line 6). If the write value is a
limited value (not a heap pointer) and the write length is more
than two bytes (the least two bytes), then we skip this heap
pointer of the Thanos object (Line 7-9). Otherwise, if it can
write the least bytes of the heap pointer (including arbitrary
value and limited value), we add the Thanos object into S
(Line 10-11).

V. IMPLEMENTATION

To realize the approach mentioned above, we implemented
a static analysis tool named TAODE. As our static analysis
is based on LLVM IR, we should first compile the kernel
source code into LLVM bitcode files. Then, we perform inter-
procedural control-flow analysis and data-flow analysis on the
generated LLVM IR. During the initializing stage, we apply
two-layer type analysis from [20], [21] to construct a field-
sensitive call graph and the build-in AliasAnalysis pass of
LLVM to perform alias analysis. In the following, we present
some implementation issues and solutions.

Privilege Check on the Path. Since our exploitation
strategy requires normal privilege, we should ensure that
the allocation path and the release path do not require root
privilege. Linux kernel uses capable() to check the process

credentials and decide whether the process has the privilege
to execute this path. If its parameter is CAP_SYS_ADMIN,
it means requiring root privilege. When we perform back-
ward control-flow analysis, we also check if the path passes
capable(CAP_SYS_ADMIN). For other parameters, like
CAP_NET_ADMIN, we don’t exclude relevant paths as it is
useful for exploitation if we can control a privileged container.

Special Cache Type. In the kernel, there are special slabs
that are dedicated for specific objects (e.g.,fuse_file). If
the heap pointer of the Thanos object points to such special
slabs, it would be difficult to find suitable victim objects and
spray objects to proceed with the exploitation. Thus, we should
exclude such Thanos object candidates with special slabs. To
have the overlapped object released into a general cache, we
must make sure that the heap pointer points to a general
slab. TAODE records the release sites of all potential Thanos
objects to identify the one with special slabs (i.e., released by
kmem_cache_free()) and exclude them.

VI. EVALUATION

In this section, we conduct experiments to validate our
versatile exploitation strategy proposed in this paper, aiming
to answer the following research questions: RQ1: Can TAODE
effectively identify Thanos objects from real-world OSes?
RQ2: Are the identified Thanos objects usable in exploiting
real-world vulnerabilities with the versatile strategy? RQ3:
Does our exploitation strategy have any other side effects in
kernel exploitation?

A. Experiment Setup

Setup. All experiments are conducted in an Ubuntu-18.04
system running on a desktop with 128G RAM and Intel(R)
Core i9-10900KF CPU @ 3.70GHz. Our TAODE is based
on LLVM-10.0.0 and we use Clang-10.0.0 to compile Linux
kernel-v5.3 into LLVM IR. Then TAODE can perform static
analysis on the generated LLVM IR. To test real-world kernel
vulnerabilities, we install QEMU-4.2.1 on Ubuntu.

Dataset. TAODE is evaluated using kernels including Linux
5.3, FreeBSD 12.1, XNU 10.15. We also evaluate our exploita-
tion approach against 20 kernel vulnerabilities (9 UAF writes
and 11 OOB writes) that have weak exploit primitives. Among
them, 14 are associated with CVE IDs and the rest without
CVE IDs are collected from syzbot [11]. As is depicted in
Table IV, we summarized their limited write capabilities. The
weakest primitive can only write one NULL byte at the front
of the adjacent slab.

Mitigation setting. To be close to real-world exploitation,
we set up four common mitigation mechanisms for the kernel.
We enabled KASLR [23], which loads the kernel to a random
location in memory. We enabled SMEP [14] and SMAP
[34] protection to prevent direct userspace access in kernel
execution. We enabled KPTI [8] to prevent it from CPU
side-channel attack. These four mitigation mechanisms are
the fundamental configurations of recent major Linux release
versions. If a generated exploit can hijack kernel control-flow
and bypass these four mitigation mechanisms, we consider that
it can perform successful exploitation.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 8, AUGUST 2022 9

Kernel Files # Total structures # Time Thanos objects #
Linux 17,544 76,670 21h 49

FreeBSD 5,896 52,867 8h 61
XNU 1,484 3,897 2h 34

TABLE II: Overall results of Thanos object identification.

Info-leak setting. As we mentioned in the Section IV-C,
sometimes we have to know the address of the target over-
lapped object first, so as to forge the heap pointer of the
Thanos object during exploitation. For there are existing
approaches to perform info-leak and it is out of our research,
we write a vulnerable driver to simulate an info-leak vulnera-
bility or other info-leak techniques. The vulnerable driver can
allocate, read and release a heap chunk. As the read size is
not checked , we can perform an out-of-bounds read to leak
the kernel address. This module is automatically loaded with
the vulnerable kernel.

B. Thanos Object Identification

1) Overall results.: We first use TAODE to analyze the
Linux kernel. We analyzed 17,554 bitcode files with 76,670
structures in Linux kernel and finally determine 63 potential
Thanos objects. The analysis took 21 hours. Then, we analyze
these objects manually and confirm 49 as true positives (listed
in Table III). The false positives are nearly 22% (i.e., 14 false
positives), which is acceptable for a static analysis approach.

To demonstrate the pervasiveness of Thanos objects, We
also analyzed FreeBSD and XNU with TAODE. The overall
results are depicted in Table V. It took 8 hours to analyze
FreeBSD and finally 76 Thanos objects were found, with 61
confirmed. Since only a small portion of XNU’s source code is
available, it just took 2 hours to analyze XNU and 52 Thanos
objects were found with 34 confirmed. The results indicate
that Thanos objects are also pervasive in FreeBSD and XNU,
and TAODE is effective in identifying Thanos objects in other
OSes. TAODE needs minor modification (e.g., allocation and
release APIs) to adapt to different OSes. Since it is difficult
to find suitable vulnerabilities to validate the Thanos objects
from other OSes, in the following analysis, we concentrate on
the results of Linux. Detailed information on Thanos objects
from other OSes is available with our released project.

2) Detailed results.: We list all the Thanos objects that we
identify and confirm from Linux in Table III. The results in
Table III (from the column on the left to the right) indicate (1)
the caches to which a Thanos object belongs, (2) the structure
type of a Thanos object, (3) the offset of the target heap pointer
in a Thanos object, (4) the constraints that an adversary has
to satisfy to successfully release the overlapped object pointed
to by the heap pointer.

Based on the observation of the results, we find that the
identified Thanos objects cover most of the general caches
and some special caches (e.g., rsb_cache). In the “cache”
column, * denotes the size of the cache can be equal to
or more than this number, which means these objects could
belong to all the general caches equal to or greater than
they are specified in the table. These size-alterable Thanos
objects (12 out of 49) could significantly enrich our object

choices during exploitation. In the “offset” column, we can
see that some objects have multiple heap pointers, which
can be used in the vulnerabilities that have different write
capabilities. The two characteristics discussed above could
potentially improve the exploitability of a vulnerability. In the
last column of Table III, we specify the constraint set based on
the data accesses and condition checks on the release path. To
release the overlapped object successfully, we should ensure
the field members satisfy the relevant constraints. Notably,
some objects have no constraint (i.e., ∅), which means they are
easy to craft during exploitation. The majority of constraints
come from data accesses, so the relevant field members must
point to proper memory to avoid access errors on the release
paths.

3) False Reports: As a static approach, our approach in-
evitably introduces false positives and false negatives. The
disposal of the following situations in TAODE can incur false
reports.

Nested structures. When we perform backward data-
flow analysis from the release pointer, one release
pointer may originate from several object types.
For example, struct x509_certificate->
struct public_key_signature*sig->u8*digest.
The release pointer *digest belongs to structure
public_key_signature, meanwhile, its structure pointer
*sig also belongs to structure x509_certificate. Thus,
we find two source object from the release pointer *digest.
However, in this case, we would ignore the middle structure
x509_certificate which is too complicated to craft this
structure under the circumstance of a weak exploit primitive.
Consequently, such simplification might cause false negatives.

Nested accesses. When there are nested accesses through
the heap pointer on the release path of a Thanos object, we
regard such Thanos objects as too complicated to exploit. This
is because if we tamper with this heap pointer to point to
the overlapped object, we must first elaborately craft valid
data on the overlapped object. However, it is too difficult
to craft complicated data (e.g., a valid pointer pointing to a
substructure) except for constants on the overlapped object
in advance, so the release path may trigger page fault and
fail to release it. A detailed example is given in Fig. 7.
Structure inet6_dev is allocated at Line 3 and released
at Line 13. However, Line 15 on the release path access
pmc->idev (two layers of nested accesses) and pmc is the
heap pointer idev->mc_tomb from structure inet6_dev.
So we excluded the Thanos objects whose heap pointer is
accessed on the release path in a complicated nested way,
which could also cause false negatives.

Error handling branches. When the release path of a
Thanos object passes an error-handling branch, then we cannot
reliably control the release anymore, which would fail the
exploitation. TAODE identify the error-handling branches by
the branch label such as error, exit, and fail in a basic
block and exclude such candidates. However, some labels
(e.g., out, clean, and free) are used by both the error-
handling branches and normal branches. TAODE ignores such
equivocal labels when identifying the error-handling branches,
which might result in false positives. A detailed example is



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 8, AUGUST 2022 10

Cache Struct Offset Constraints

kmalloc-16 cond expr 8 [8, 16) == k1
map iter 0 ∅

kmalloc-16* cfg80211 nan func filter 0 ∅

kmalloc-32

static key mod 0 [0, 8) == k1, [16, 24) == Arg
perf domain 8 [8, 16) == k1

ip sf list 0 [0, 8) == k1, [8, 16) == 1, [16, 24) == 1
role trans 16 [16, 24) == k1
nfs4 label 16 ∅

workqueue attrs 8 ∅

kmalloc-32*
pneigh entry 0 [0, 8) == k1, [16, 24) == 0

jffs2 full dirent 8 [8, 16) == k1, [20, 24) ≥ 0xffff
simple xattr 16 [0, 8) == k1, [8, 16) == k1

kmalloc-64

ip vs sync buff 24 [0, 8) == k1, [8, 16) == k1
ip6 sf list 0 [0, 8) == k1, [24, 32) == 1, [32, 40) == 1
tipc peer 8 [32, 40) == k1, [40, 48) == k1

cond node 8, 16, 24 [8, 16) == k1, [16, 24) == k1, [24, 32) == k1, [32, 40) == k2
nfs4 client reclaim 32 [0, 8) == k1, [8, 16) == k1
orangefs bufmap 24, 32, 40 [24, 32) == k1, [32, 40) == k1, [40, 48) == k1

fuse dev 16 [0, 8) == 0, [40, 48) == k1, [48, 56) == k1
netlbl lsm catmap 40 [40, 8) == k1

xhci command 16 [0, 8) == k2

kmalloc-64*

msg msg 0, 32, 40
0: [0, 8) == k1, [16,24) ̸= Arg1

32: [32, 40) == k1, [16, 24) == Arg1, [24, 32) ≥ Arg2
40: [16, 24) == Arg1

sched group 16 [0, 8) == 0, [16, 24) == k1
ctl table 0 [20, 22) > 0, [24, 32) == 0, [32, 40) == 0

ip vs sync thread data 24 [0, 8) == k2, [16, 24) == 0
dfs info3 param 16, 24 ∅

kmalloc-96
request key auth 40 [16, 24) == k1, [24, 32) == k1, [32, 40) == 0

smc buf desc 16 [0, 8) == k1, [8, 16) == k1
usb request 0 ∅

kmalloc-96* ctl table header 32 ∅
port buffer 0 [40, 48) == k1, [48, 56) == k1, [56, 64) == k1, [64, 68) == 0

kmalloc-128
ip6 flowlabel 32 [12, 16) > 1, [64, 65) == 1

virtio vsock pkt 104 [80, 88) == k1, [88, 96) == k1, [96, 104) == k1
cfg80211 nan func 32, 48, 64 ∅

kmalloc-128* nft object 32 [64, 72) == k3

kmalloc-192

x509 certificate 32, 40, 48, 56 [16, 24) == k2, [24, 32) == k2, [32, 40) == k1,
[40, 48) == k1, [48, 56) == k1, [56, 64) == k1

kernfs open file 120 [104, 112) == k1, [112, 120) == k1, [136, 137) == 0
urb 8, 96, 136 [64, 72) == k2

ring buffer 16 [64, 72) == k2, [72, 80) == k1, [80, 88) == k1

kmalloc-256

ima rule entry 88, 96 [88, 96) == k1, [96, 104) == k1
station info 184 ∅

nft flow rule 192 ∅
afs sysnames 8n (0 ≤ n ≤ 15) [128, 132) > 0

kmalloc-512 ax25 cb 32 [0, 8) == k1, [8, 16) == k1, [464, 468) > 0
smb vol 0, 8, 16, 24, 32, 152 ∅

kmalloc-1024 mpoa client 120 [128, 132) > 0
policydb 256, 288, 328 [256, 264) == k1, [288, 296) == k1, [328, 336) == k1

rsb cache dlm rsb 232 ∅
xattr datum cache jffs2 xattr datum 64 [24, 32) == k1, [32, 40) == k1

TABLE III: Thanos objects identified and confirmed in Linux. In the “cache” column, * denotes the size of the cache can be
equal or more than this number. In the “constraints” column, ∅ denotes data disclosure imposes no critical constraints. Arg
represents a system call argument under a user’s control. kn stands for a kernel address which points to n layers of nested
structures.

given in Fig. 8. Structure map_info is allocated at Line
8. If the allocation fails, it would jump to the error-handling
branch (Line 9) and calls free_map_info() to do release
work. Fortunately, the false positives can be removed easily
by manual analysis.

Answer to RQ1: Based on the above analysis, we
can conclude that TAODE can effectively identify
Thanos Objects from real-world OSes with accept-
able false rates.

C. Exploitation on Real-world Vulnerabilities
To prove the usefulness of the identified Thanos objects,

we use them to exploit 20 real-world vulnerabilities. We list



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 8, AUGUST 2022 11

1 static struct inet6_dev *ipv6_add_dev(struct
↪→ net_device *dev){

2 struct inet6_dev *ndev;
3 ndev = kzalloc(sizeof(struct inet6_dev),

↪→ GFP_KERNEL); // alloc site
4 ...
5 }
6 static void mld_clear_delrec(struct

↪→ inet6_dev *idev){
7 struct ifmcaddr6 *pmc, *nextpmc;
8 pmc = idev->mc_tomb;
9 for (; pmc; pmc = nextpmc) {
10 nextpmc = pmc->next;
11 ip6_mc_clear_src(pmc);
12 in6_dev_put(pmc->idev); // nested access
13 kfree(pmc); // release site
14 }
15 ...
16 }

Fig. 7: An example that nested access through the heap pointer
occurs on the release path

1 static struct map_info *build_map_info(
↪→ struct address_space *mapping, ...){

2 struct map_info *curr = NULL;
3 struct map_info *prev = NULL;
4 struct map_info *info;
5 int more = 0;
6 ...
7 do {
8 info = kmalloc(sizeof(struct map_info),

↪→ GFP_KERNEL); // alloc site
9 if (!info) { // error-handling branch
10 curr = ERR_PTR(-ENOMEM);
11 goto out;
12 }
13 info->next = prev;
14 prev = info;
15 } while (--more);
16 out:
17 while (prev)
18 prev = free_map_info(prev);
19 return curr;
20 }
21 static inline struct map_info *free_map_info

↪→ (struct map_info *info){
22 struct map_info *next = info->next;
23 kfree(info); // release site
24 return next;
25 }

Fig. 8: An example that error-handling branch calls release
function

all the kernel vulnerabilities used for our evaluation in Table
IV. From the column on the left to right, the results shown
in the table indicate (1) the CVE-ID or Syzkaller-ID of the
vulnerability, (2) the vulnerability type, (3) the cache type of
the vulnerable object, (4) the capability of the vulnerability
summarized manually, (5) which weak type the vulnerability
belongs to, (6) whether traditional techniques can exploit
the vulnerability, (7) the number of suitable Thanos objects
useful for the exploitation of the vulnerability, (8) whether the
vulnerability can be exploited by using Thanos objects.

Summary of Real-world Vulnerability Exploitation. Of
the 20 vulnerabilities, 15 are successfully exploited using

Thanos objects. Among the 15 exploited vulnerabilities, 8
OOB vulnerabilities have very limited write capabilities and
4 UAF vulnerabilities have no function pointer dereference,
making traditional exploitation techniques fail. One OOB
(CVE-2017-7184) that has unlimited write capability can be
exploited both by traditional techniques and Thanos objects.
This indicates that Thanos objects are effective in exploiting
both weak primitives and strong primitives. Moreover, all
exploitable vulnerabilities except CVE-2016-4557 have more
than one Thanos object available for exploitation. Some vul-
nerabilities have a great many useful Thanos objects, this is
because they have better write capabilities in relative or they
can corrupt heap data in various caches. For example, CVE-
2017-7184 can corrupt 7 cache types with arbitrary length, so
there are 43 objects at most that can be used to exploit. This
implies that TAODE could provide a security researcher with
various approaches to craft a working exploit.

Case Study of CVEs. We first take CVE-2017-7533
as an example to show how the Thanos object is used
in the exploitation. As Fig. 9 shows, CVE-2017-7533 is
an OOB write vulnerability that can overwrite 11 arbitrary
bytes to the adjacent heap chunk in kmalloc-96. The func-
tion inotify_handle_event() first calculates a length
alloc_len (Line 8 to Line 10) and allocates a buffer (Line
13) to store the vulnerable object inotify_event_info.
Then it copies a string file_name to the buffer (Line 16).
However, another thread may change the file_name to a
longer string between Line 9 and Line 16, which results in a
buffer overflow. Though it can write 11 arbitrary bytes, it can’t
overwrite any function pointers, thus, we regard it as having
a weak primitive.

To exploit CVE-2017-7533 using our strategy, first, we
should find a Thanos object also in cache kmalloc-96
with a heap pointer in the front, so that the heap pointer
can be overwritten by the vulnerability. We found 6 el-
igible Thanos objects: cfg80211_nan_func_filter,
pneigh_entry, msg_msg, ctl_table, usb_request,
and port_buffer. Then we use heap spraying techniques
to put the selected Thanos object (i.e., port_buffer) right
after the vulnerable object (i.e, inotify_event_info).
Next, we trigger the overflow and overwrite the heap pointer
of the Thanos object to point to another existing heap chunk in
kmalloc-1024, which has appropriate victim object and spray
object for exploitation. After that, we release the overlapped
chunk twice using the existing pointer and the fake heap
pointer of the Thanos object, respectively. Finally, we use a
victim object (such as tty_struct or pipe_buffer) and
a spray object (such as the linear buffer of sk_buff) to take
up the released chunk respectively. The spray object can craft
a fake function pointer (pipe_buffer->ops->release)
in the victim object to hijack the control-flow.

For CVE-2021-26708, which can write 4 arbitrary bytes
at offset 40 in kmalloc-64, TAODE found 3 Thanos objects
available: orangefs_bufmap, netlbl_lsm_catmap
and msg_msg. While for CVE-2021-22555, which can
overwrite 2 NULL bytes in the adjacent kmalloc-
4096, TAODE found 5 Thanos objects available:
cfg80211_nan_func_filter, pneigh_entry,



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 8, AUGUST 2022 12

CVE-ID or
Syzkaller-ID Type Cache Capability Weak Type Traditional

Exploitation
Suitable

Objects #
Using Thanos

Objects
a84d... [28] OOB kmalloc-32 (0, 4, arb) write unimportant data ✗ 4 ✓

aaa3... [32] OOB kmalloc-256 (0, 4, NULL) write limited value;
write unimportant data ✗ 0 ✗

b0f0... [27] UAF kmalloc-32 (0, 32, arb) no fptr-dereference ✗ 10 ✓
bf96... [30] UAF ip dst cache (64, 4, arb) no fptr-dereference ✗ 0 ✗

e4be... [29] OOB kmalloc-64
(0, 16, arb);
(16, 8, 192);

(24, 40, NULL)
write unimportant data ✗ 8 ✓

f2ae... [31] OOB

kmalloc-256;
kmalloc-512;
kmalloc-1024;
kmalloc-2048;
kmalloc-4096

(*, 4, arb) write unimportant data ✗ 7 ✓

CVE-2022-25636 OOB

kmalloc-32;
kmalloc-128;
kmalloc-192;
kmalloc-256;
kmalloc-512;
kmalloc-1024;
kmalloc-2048;
kmalloc-4096;

((56 + 80n)%s, 8, hptr)
(n = 1,2,3,...;

s = 32, 128, 192,
256, 512, 1024,

2048, 4096)

write limited value;
write unimportant data ✗ 8 ✓

CVE-2021-42008 OOB kmalloc-4096 (14, *, arb) write unimportant data ✗ 7 ✓
CVE-2021-26708 UAF kmalloc-64 (40, 4, arb) no fptr-dereference ✗ 3 ✓

CVE-2021-22555 OOB kmalloc-4096 (0, 2, NULL)
write short length;
write limited value;

write unimportant data
✗ 5 ✓

CVE-2018-18559 UAF kmalloc-2048 (1328, 8, arb) - ✓ 0 ✗

CVE-2017-7533 OOB kmalloc-96 (0, 11, arb);
(11, 1, NULL) write unimportant data ✗ 6 ✓

CVE-2017-7184 OOB

kmalloc-32;
kmalloc-64;
kmalloc-96;

kmalloc-128;
kmalloc-192;
kmalloc-256;
kmalloc-512

(0, *, arb) - ✓ 43 ✓

CVE-2017-15649 UAF kmalloc-4096 (2160, 8, arb) - ✓ 0 ✗

CVE-2017-15265 UAF kmalloc-512 (16, 64, arb);
(304, 28, arb); no fptr-dereference ✗ 9 ✓

CVE-2016-6516 OOB

kmalloc-64;
kmalloc-96;

kmalloc-128;
kmalloc-196;
kmalloc-256;
kmalloc-512;
kmalloc-1024;
kmalloc-2048;
kmalloc-4096

(*, 4, NULL) write limited value;
write unimportant data ✗ 0 ✗

CVE-2016-6187 OOB

kmalloc-8;
kmalloc-16;
kmalloc-32;
kmalloc-64;
kmalloc-128

(0, 1, NULL)
write short length;
write limited value;

write unimportant data
✗ 9 ✓

CVE-2016-4557 UAF kmalloc-256 (56, 16, arb) no fptr-dereference ✗ 1 ✓
CVE-2016-10150 UAF kmalloc-64 (24, 16, arb) - ✗ 7 ✓
CVE-2016-0728 UAF kmalloc-256 (0, 8, arb) - ✗ 6 ✓

TABLE IV: The summary of exploitability of the vulnerabilities we used. In the “Capability” column, arb denotes that the
vulnerability can write arbitrary value, * denotes that the write offset and the write length can be arbitrary, and hptr denotes
that the write value is a heap pointer. In the “Traditional Exploitation” and “Using Thanos objects” columns, we use ✓ and ✗
to show if the exploitation succeed by using traditional techniques or Thanos objects. # in the seventh column indicates the
number of Thanos objects useful for the exploitation of the corresponding vulnerability.

ctl_table, msg_msg and port_buffer. Both CVE-
2021-26708 and CVE-2021-22555 can overwrite the heap
pointer of corresponding Thanos objects to point to an
existing heap chunk and release it. Then we can use the
versatile exploitation strategy to hijack control-flow and
escalate privilege.

Analysis of the Failed cases. Among the 20 tested vul-
nerabilities, 5 of them are failed to find suitable objects

for their exploitation. We classify these failures into two
categories. First, some vulnerabilities can only write at a
special cache or write at an unusual offset. For example,
the vulnerable object of bf96... [30] is in a special cache
named ip_dst_cache, and there is no Thanos object in the
same cache found. As for CVE-2018-18559 and CVE-2017-
15649, they can only write at a large offset (1328 and 2160)
but we cannot find a Thanos object with a heap pointer at the



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 8, AUGUST 2022 13

1 int inotify_handle_event(..., const unsigned
↪→ char *file_name, ...){// vulnerable
↪→ function

2 struct inotify_event_info *event;
3 int len = 0;
4 int alloc_len = sizeof(struct

↪→ inotify_event_info);
5 ...
6 if (file_name) {
7 len = strlen(file_name);
8 alloc_len += len + 1;
9 }
10 ...
11 event = kmalloc(alloc_len, GFP_KERNEL);
12 ...
13 if (len)
14 strcpy(event->name, file_name); //

↪→ overflow point
15 ...
16 }
17 struct inotify_event_info { // vulnerable

↪→ object
18 struct fsnotify_event fse;
19 int wd;
20 u32 sync_cookie;
21 int name_len;
22 char name[];
23 };
24 struct port_buffer { // Thanos object
25 char *buf; // target heap pointer
26 size_t size;
27 size_t len;
28 size_t offset;
29 dma_addr_t dma;
30 struct device *dev;
31 struct list_head list;
32 unsigned int sgpages;
33 struct scatterlist sg[0];
34 };

Fig. 9: Source code snippet of CVE-2017-7533.

same offset. Second, some vulnerabilities will write 4 NULL
bytes to the adjacent object, such as aaa3... [32] and CVE-
2016-6516. We use an example to illustrate the difference
of exploitation between 2 NULL bytes write and 4 NULL
bytes write. Assume the vulnerable object is in the kmalloc-
256 cache and there are two pointers pointing to two adjacent
heap chunks in the kmalloc-256 cache. The first chunk is at
0xffffc9d0nnnnn000 pointed to by ptr1, while the second
chunk is at 0xffffc9d0nnnnn100 pointed to by ptr2. The
variable n can be an arbitrary hexadecimal number (0 ≤ n ≤
0xf). We use the two write capabilities to change the least two
or four bytes of ptr2 respectively and calculate the possibility
that ptr2 will point to the first chunk. The 2 NULL bytes
write can change ptr2 to 0xffffc9d0nnnn0000, while the 4
NULL bytes write can change ptr2 to 0xffffc9d000000000.
As the kernel heap address is randomized, the chances that the
first chunk is at 0xffffc9d0nnnn0000 and 0xffffc9d000000000
are 1/16 and 1/1048576 (1/0x100000). Therefore, the success
rate of creating the overlapped state using 4 NULL bytes
write is quite low. An appropriate heap spraying strategy can
improve the success rate a little, but it is still unacceptable in
practice. This is why we cannot find suitable Thanos objects
for aaa3... [32] and CVE-2016-6516. As we have tested
in practice, only 1 or 2 NULL bytes write could have an
acceptable success rate.

Answer to RQ2: Based on the exploitation of
real-world vulnerabilities, we can conclude that the
identified Thanos objects are usable as long as they
are matched with suitable vulnerabilities.

D. Extra Benefits of Using Thanos Objects

Bypassing SMAP. In our experiments, two UAFs (CVE-
2016-10150 and CVE-2016-0728) failed to be exploited by the
traditional exploitation method owing to the protection of the
SMAP scheme in Linux, however, they can still be exploited
using our strategy. This is because, when exploiting these two
vulnerabilities, the vulnerable objects in them are too small to
place the exploit payloads. Traditional exploitation methods
seek to place the payload in the user space, but reading user
content directly from the kernel is prohibited by the SMAP
scheme. Therefore, a precondition of the traditional exploita-
tion method is disabling SMAP, otherwise, the exploitation
would be failed. However, our strategy can use Thanos objects
to transform the vulnerable objects to bigger kernel slabs that
have more space to craft exploit payloads, which bypasses the
SMAP. This indicates an advantage of using the Thanos object
is bypassing certain kernel protection scheme.

Utilizing Leaked Heap Pointer. Using Thanos objects has
another merit that it can better utilize the leaked information.
For traditional exploitation techniques, the leaked information
is useful only when it is a function pointer or an address of
a global variable, which can be helpful to bypass KASLR.
Whereas information such as the address of an ordinary heap
pointer is mostly useless. However, for our approach, the
address of a heap pointer is also useful, which can be used to
construct the vulnerable overlapped state. For example, CVE-
2022-25636 can leak the address of a heap pointer that points
to object net_device. Based on this heap pointer, we can
use a Thanos object to release object net_device and use
a spray object to tamper the function table pointer in object
net_device, finally, hijacking the control-flow. Hence, our
exploitation method can take advantage of the seemingly
useless leaked heap pointer in the exploitation. Given such
a reason, Thanos objects can be used to break certain vul-
nerability patches. For example, given an exploitable double-
free vulnerability, even when it has been patched (usually by
eliminating one redundant free operation), the address of the
vulnerable object is still known. The traditional exploitation
approach is unworkable as only one free operation is left.
However, our approach is still feasible as the address of the
vulnerable object is known and the object is pointed to by a
pointer. We can find a suitable Thanos object to release the
vulnerable object and use a spray object to tamper with the
function pointer in it, finally, the control-flow can be hijacked.
Since we haven’t found a real example, it is only a theoretical
assumption.

Answer to RQ3: Using Thanos objects has extra
benefits, such as bypassing the SMAP scheme and
better utilizing the leaked heap pointer, both can
facilitate the exploitation.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 8, AUGUST 2022 14

VII. DISCUSSION

The accuracy of object identification. The accuracy of
Thanos object identification is determined by the static analy-
sis used in TAODE. First, TAODE employs the two-layer type
analysis to construct control-flow graph and the LLVM built-in
alias analysis pass to do alias analysis. Then, TAODE performs
inter-procedural control-flow and data-flow analysis to explore
the allocation path and the release path, which is the main
part of TAODE. Therefore, the false positives and the false
negatives mainly originate from these two procedures. Due
to the resource constraints and the nature of static analysis,
we cannot get an accurate control-flow and data-flow graph,
making it hard to find the allocation path and the release
path in deeper paths. And this is also hard to confirm by
manual analysis in such a huge system. Second, as we have
mentioned in the evaluation, nested structures, nested accesses
and error handling branches during the control-flow and data-
flow analysis can also bring in false reports.

Application of the Thanos object. In reality, large numbers
of vulnerabilities are regarded as “unexploitable” or underesti-
mated owing to the difficulty in exploiting the weak primitives.
Using the Thanos objects, we can transform weak primitives
into strong primitives. Under this circumstance, such “unex-
ploitable” vulnerabilities are reborn and would have a serious
impact on the system security. We have proved with real-world
vulnerabilities the feasibility of transforming weak primitives
to strong primitives using Thanos objects. More importantly,
we have identified numerous eligible Thanos objects from
Linux, XNU, and FreeBSD. These Thanos objects can be
paired with suitable vulnerabilities to make the exploitation
feasible, and some of them can even bypass the existing miti-
gation mechanisms. For example, CVE-2016-10150 and CVE-
2016-0728 are two UAF vulnerabilities that failed to exploit
with traditional techniques owing to the SMAP mechanism
in the Linux kernel. However, using Thanos objects, both
of them can bypass SMAP and become exploitable again.
Moreover, the exploitation approach with Thanos objects can
better utilize the leaked information, such as the address of
an ordinary heap pointer (CVE-2022-25636). Based on this,
Thanos objects can be used to break certain vulnerability (e.g.,
double-free) patches.

The distinction from double-free. Our versatile exploiting
strategy needs to release an overlapped object twice so as to
use a victim object and a spray object to take up the vulnerable
object respectively. Though similar to the commonly seen
exploitation of the double-free vulnerability, our strategy is
different from it. First, in the double-free exploitation, the
vulnerable overlapped state is caused by the same object
(i.e., the vulnerable object), while in our versatile exploitation
strategy, the vulnerable overlapped state can be caused by the
same object type or different object types (as long as they are
in the same cache). Second, in the double-free exploitation, the
cache of the overlapped state is fixed, while in our versatile
strategy we can decide the size of the overlapped object
by controlling the heap pointer in the Thanos object. Third,
in some caches, it is difficult to find both a perfect victim
object and a perfect spray object at the same time. It fails to

exploit the double-free if the vulnerable object falls in one of
these caches and has no function pointer dereference itself.
However, in our versatile strategy, it is much easier to exploit
by constructing the vulnerable overlapped state in a different
cache that has abundant victim objects and spray objects
available. In summary, using the Thanos object, our versatile
exploitation strategy is more flexible and practical than the
traditional double-free exploitation. Besides, our strategy is
also useful to exploit a double-free vulnerability.

Potential mitigation mechanisms. To defend against the
versatile exploitation strategy based on the Thanos object,
we can use the following alleviation approaches. First, the
structure layout randomization [7] can randomize the offsets
of field members in a structure, preventing an adversary from
predicting the location of sensitive structure fields in kernel
memory. However, Chen et al. [4] put forward a solution to
bypass it. Second, we can isolate Thanos objects that TAODE
identifies into individual shadow caches, which prevents an
adversary from putting the Thanos object at or next to the
vulnerable object. However, this approach should consider
the performance overhead and it requires searching out all
available Thanos objects.

VIII. RELATED WORK

Kernel exploitation. SemFuzz [40] uses Natural Language
Processing to extract vulnerability-related text (e.g., CVE
reports and Linux git logs) and guide the semantics-based
fuzzing process to generate PoC exploits automatically. Lu
et al. [22] proposed a deterministic stack spraying technique
and an exhaustive memory spraying technique to facilitate the
exploitation of uninitialized uses. FUZE [38] utilizes kernel
fuzzing along with symbolic execution to identify, analyze,
and evaluate the system calls valuable and useful for kernel
UAF exploitation. KEPLER [37] can automatically generate a
“single-shot” exploitation chain to facilitate the evaluation of
control-flow hijacking primitives in the Linux kernel. SLAKE
[5] uses static and dynamic analysis techniques to explore the
kernel objects that are useful for kernel heap spraying, and
the author proposed a technical approach to facilitate the slab
layout adjustment.

Tool Vulnerability Target Technique
FUZE UAF - fuzz/SE

KEPLER UAF/OOB/DF special gadget static analyse
SLAKE UAF/OOB/DF spray/victim object static/dynamic analyse
KOOBE OOB - fuzz
ELOISE UAF/OOB/DF elastic object static analyse
TAODE weak UAF/OOB Thanos object static analyse

TABLE V: Comparison with other tools.

For kernel OOB vulnerabilities, KOOBE [3] applies a
novel capability-guided fuzzing solution to uncover hidden
capabilities, and a way to compose capabilities together to
further enhance the likelihood of successful exploitation. For
kernel non-inclusive multi-variable races, EXPRACE [18] can
turn hard-to-exploit races into easy-to-exploit races by manip-
ulating an interrupt mechanism during the exploitation. Zeng et
al. [41] proposed a new stabilization technique, called Context



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 8, AUGUST 2022 15

Conservation, to improve exploitation reliability for double-
free and UAF vulnerabilities. SyzScope [42] and GREBE [19]
both apply a new kernel fuzzing technique to explore all
the possible error behaviors that a kernel bug might bring
about. However, no research can tackle the problem when
a vulnerability has a weak exploit primitive. Specifically, a
UAF may have no function pointer dereference and an OOB
write may have limited write length and write value. Using
Thanos objects, we can transform a weak exploit primitive
into a strong exploit primitive to promote the exploitation.

Bypassing kernel mitigation mechanisms. Kem et al. [15]
proposed a new kernel exploitation technique, called return-to-
direct-mapped memory (ret2dir), which bypasses all existing
ret2usr defenses, namely SMEP [14], SMAP [34], PXN [2],
KERNEXEC [26], UDEREF [25], and kGuard [16]. When
kernel physmap was set to be non-executable, Xu et al. [39]
proposed two practical memory collision attacks to exploit
UAF: An object-based attack that leverages the memory re-
cycling mechanism of the kernel allocator to achieve freed
vulnerable object covering, and a physmap-based attack that
takes advantage of the overlap between the physmap and the
SLAB caches to achieve a more flexible memory manipulation.
In the wild, the adversary usually constructs ROP chain [36]
to bypass SMEP and flips corresponding bits in the cr4
register [17] to bypass SMAP. There are several approaches
to defeating KASLR. Gruss et al. [12] and Jiang et al. [13]
utilize hardware attributes and side-channel attacks to leak
kernel information. Cho et al. [6] present a generic approach
that converts stack-based information leaks in Linux kernel
into kernel-pointer leaks. ELOISE [4] utilizes static/dynamic
analysis methods to pinpoint elastic kernel objects that can be
used to leak kernel information and then employs constraint
solving to pair them to corresponding kernel vulnerabilities.
Though our work does not focus on bypassing kernel miti-
gation mechanisms, the existing techniques can be auxiliary.
Especially when we begin to corrupt the target heap pointer
of the Thanos object, we can use the techniques above to leak
some kernel addresses first.

IX. CONCLUSION

In this paper, we proposed a versatile strategy that can trans-
form weak exploit primitives into strong exploit primitives.
Using a special object in the kernel called the Thanos object,
our strategy can exploit a UAF that does not have function
pointer dereference or an OOB write that just has limited write
length and write value. We facilitate the strategy, we devised
a tool TAODE to search for eligible Thanos objects from the
kernel and pair them with appropriate vulnerabilities. We have
successfully identified numerous Thanos objects from Linux,
XNU, and FreeBSD. Using the identified Thanos objects, we
have proved the feasibility of our approach with 20 real-world
kernel vulnerabilities, most of which traditional techniques fail
to exploit.

X. ACKNOWLEDGEMENT

The authors would like to sincerely thank all the reviewers
for your time and expertise on this paper. Your insightful
comments help us improve this work. This work is partially

supported by the National University of Defense Technology
Research Project (ZK20-17, ZK20-09), the National Natural
Science Foundation China (62272472, 61902412), and the
HUNAN Province Natural Science Foundation (2021JJ40692).

REFERENCES

[1] K. Alspach, “Major attacks using log4j vulnerability ‘lower than ex-
pected’,” 2017, https://venturebeat.com/2022/01/24/major-attacks-usin
g-log4j-vulnerability-lower-than-expected/.

[2] A. ARM, “Architecture reference manual,” ARMv7-A and ARMv7-R
edition, 2012.

[3] W. Chen, X. Zou, G. Li, and Z. Qian, “Koobe: Towards facilitating
exploit generation of kernel out-of-bounds write vulnerabilities,” in 29th
USENIX Security Symposium (USENIX Security 20), 2020, pp. 1093–
1110.

[4] Y. Chen, Z. Lin, and X. Xing, “A systematic study of elastic objects
in kernel exploitation,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp.
1165–1184.

[5] Y. Chen and X. Xing, “Slake: facilitating slab manipulation for exploit-
ing vulnerabilities in the linux kernel,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019,
pp. 1707–1722.

[6] H. Cho, J. Park, J. Kang, T. Bao, R. Wang, Y. Shoshitaishvili, A. Doupé,
and G.-J. Ahn, “Exploiting uses of uninitialized stack variables in linux
kernels to leak kernel pointers,” in 14th USENIX Workshop on Offensive
Technologies (WOOT 20), 2020.

[7] K. Cook, “security things in linux v4.13,” 2017, https://outflux.net/blo
g/archives/2017/09/05/security-things-in-linux-v4-13/.

[8] J. Corbet, “A page-table isolation update,” 2018, https://lwn.net/Article
s/752621/.

[9] T. M. Corporation, “common vulnerability and exposures,” 2021, https:
//cve.mitre.org/cve/.

[10] C. Details, “Linux: Vulnerability statistics,” 2022, https://www.cvedeta
ils.com/vendor/33/Linux.html.

[11] google, “Syzbot: Google continuously fuzzing the linux kernel,” 2018,
https://syzkaller.appspot.com/upstream.

[12] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
side-channel attacks: Bypassing smap and kernel aslr,” in Proceedings
of the 2016 ACM SIGSAC conference on computer and communications
security, 2016, pp. 368–379.

[13] Y. Jang, S. Lee, and T. Kim, “Breaking kernel address space layout
randomization with intel tsx,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp. 380–
392.

[14] M. Jurczyk and G. Coldwind, “Smep: What is it, and how to beat it
on windows,” 2011, https://j00ru.vexillium.org/2011/06/smep-what-is-
it-and-how-to-beat-it-on-windows/.

[15] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “ret2dir:
Rethinking kernel isolation,” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 957–972.

[16] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, “kguard:
Lightweight kernel protection against return-to-user attacks,” in 21st
USENIX Security Symposium (USENIX Security 12), 2012, pp. 459–
474.

[17] A. Konovalov, “Exploiting the linux kernel via packet sockets,”
2017, https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-
kernel-via-packet.html.

[18] Y. Lee, C. Min, and B. Lee, “Exprace: Exploiting kernel races through
raising interrupts,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021.

[19] Z. Lin, Y. Chen, Y. Wu, C. Yu, D. Mu, X. Xing, and K. Li, “Grebe:
Unveiling exploitation potential for linux kernel bugs,” 31th USENIX
Security Symposium (USENIX Security 22), 2022.

[20] K. Lu and H. Hu, “Where does it go? refining indirect-call targets with
multi-layer type analysis,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp.
1867–1881.

[21] K. Lu, A. Pakki, and Q. Wu, “Detecting missing-check bugs via
semantic-and context-aware criticalness and constraints inferences,” in
28th USENIX Security Symposium (USENIX Security 19), 2019, pp.
1769–1786.

[22] K. Lu, M.-T. Walter, D. Pfaff, S. Nümberger, W. Lee, and M. Backes,
“Unleashing use-before-initialization vulnerabilities in the linux kernel
using targeted stack spraying.” in NDSS, 2017.

https://venturebeat.com/2022/01/24/major-attacks-using-log4j-vulnerability-lower-than-expected/
https://venturebeat.com/2022/01/24/major-attacks-using-log4j-vulnerability-lower-than-expected/
https://outflux.net/blog/archives/2017/09/05/security-things-in-linux-v4-13/
https://outflux.net/blog/archives/2017/09/05/security-things-in-linux-v4-13/
https://lwn.net/Articles/752621/
https://lwn.net/Articles/752621/
https://cve.mitre.org/cve/
https://cve.mitre.org/cve/
https://www.cvedetails.com/vendor/33/Linux.html
https://www.cvedetails.com/vendor/33/Linux.html
https://syzkaller.appspot.com/upstream
https://j00ru.vexillium.org/2011/06/smep-what-is-it-and-how-to-beat-it-on-windows/
https://j00ru.vexillium.org/2011/06/smep-what-is-it-and-how-to-beat-it-on-windows/
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html


IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 8, AUGUST 2022 16

[23] LWN, “Kernel address space layout randomization,” 2013, https://lwn.n
et/Articles/569635/.

[24] A. Nguyen, “Cve-2021-22555: Turning 0000 into 10000$,” 2021,
https://google.github.io/security-research/pocs/linux/cve-2021-22555/
writeup.html.

[25] PAX, “Homepage of the pax team,” 2013, http://pax.grsecurity.net/.
[26] B. Spengler, “The guaranteed end of arbitrary code execution,” 2022,

https://grsecurity.net/PaX-presentation.pdf.
[27] syzbot, “Kasan: use-after-free read in mpi free,” 2017, https://syzkalle

r.appspot.com/bug?id=b0f0a3d34f0e9d551e1c0ab1fd911aaaa18bdcb9.
[28] syzbot, “Kasan: slab-out-of-bounds write in crypto dh encode key,”

2018, https://syzkaller.appspot.com/bug?id=a84d6ad70b281bfc5632f2
72f745104fb43d219d.

[29] syzbot, “Kasan: slab-out-of-bounds write in sha512 final,” 2018,
https://syzkaller.appspot.com/bug?id=e4be30826c1b7777d69a9e3e20bc
7b708ee8f82c.

[30] syzbot, “Kasan: use-after-free write in dst release,” 2018,
https://syzkaller.appspot.com/bug?id=bf967d2c5ba62946c6115253
4c8b84823d848f05.

[31] syzbot, “Kasan: slab-out-of-bounds write in hiddev ioctl usage,” 2020,
https://syzkaller.appspot.com/bug?id=f2aebe90b8c56806b050a20b36f5
1ed6acabe802.

[32] syzbot, “Kasan: slab-out-of-bounds write in xfrm attr cpy32,” 2021,
https://syzkaller.appspot.com/bug?id=aaa35b314220404bbc2b1c66067b
0f9a623baa89.

[33] Wikipedia, “Wannacry ransomware attack,” 2017, https://en.wikipedia.o
rg/wiki/WannaCry ransomware attack.

[34] Wikipedia, “Supervisor mode access prevention,” 2021, https://en.wikip
edia.org/wiki/Supervisor Mode Access Prevention.

[35] Wikipedia, “Executable space protection,” 2022, https://en.wikipedia.o
rg/wiki/Executable space protection.

[36] Wikipedia, “Return-oriented programming,” 2022, https://en.wikipedia
.org/wiki/Return-oriented programming.

[37] W. Wu, Y. Chen, X. Xing, and W. Zou, “Kepler: Facilitating control-
flow hijacking primitive evaluation for linux kernel vulnerabilities,” in
28th USENIX Security Symposium (USENIX Security 19), 2019, pp.
1187–1204.

[38] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, “Fuze: Towards
facilitating exploit generation for kernel use-after-free vulnerabilities,”
in 27th USENIX Security Symposium (USENIX Security 18), 2018, pp.
781–797.

[39] W. Xu, J. Li, J. Shu, W. Yang, T. Xie, Y. Zhang, and D. Gu, “From
collision to exploitation: Unleashing use-after-free vulnerabilities in
linux kernel,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, 2015, pp. 414–425.

[40] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and B. Liang,
“Semfuzz: Semantics-based automatic generation of proof-of-concept
exploits,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 2139–2154.

[41] K. Zeng, Y. Chen, H. Cho, X. Xing, A. Doupé, Y. Shoshitaishvili, and
T. Bao, “Playing for k (h) eaps: Understanding and improving linux
kernel exploit reliability.”

[42] X. Zou, G. Li, W. Chen, H. Zhang, and Z. Qian, “Syzscope: Revealing
high-risk security impacts of fuzzer-exposed bugs in linux kernel,” arXiv
preprint arXiv:2111.06002, 2021.

XI. BIOGRAPHY SECTION

Danjun Liu received his B.S. and M.S. degrees in computer science and
technology, in 2016 and 2018, respectively, from National University of
Defense Technology, Changsha. He is currently pursuing the Ph.D degree
in cyberspace security with the National University of Defense Technology.
His research interests include operating systems and software security.

Pengfei Wang received his B.S., M.S., and Ph.D degrees in computer science
and technology, in 2011, 2013, and 2018 respectively, from the College
of Computer, National University of Defense Technology, Changsha. He is
now an assistant professor in the College of Computer, National University
of Defense Technology, Changsha. His research interests include operating
systems and software testing.

Xu Zhou received his BS, MS, and Ph.D degree in the School of Computer
Science from National University of Defense Technology, China, in 2007,
2009, and 2013, respectively. He is now an associate professor in the School of
Computer Science, National University of Defense Technology. His research
interests include operating system and security.

Wei Xie received his Ph.D degree in communication network security, in
2014, from the School of Electronic Science, National University of Defense
Technology, China. Currently, he is an associate professor in the College of
Computer, National University of Defense Technology, Changsha. His recent
research interests include firmware vulnerability detection, web pentest and
AI-based security.

Gen Zhang received his B.S., M.S., and Ph.D. degrees in computer science
and technology, in 2016, 2018, and 2022, respectively, from the College
of Computer, National University of Defense Technology, Changsha. His
research interests include fuzzing and software testing.

Zhenhao Luo received his B.S. and M.S. degrees in cyberspace security, in
2016 and 2018, respectively, from National University of Defense Technology,
Changsha. Zhenhao Luo is currently pursuing the Ph.D degree in cyberspace
security with the National University of Defense Technology. His current
research interests include binary code similarity detection and vulnerability
detection.

Tai Yue received his B.S. degree from the Department of Mathematics,
Nanjing University, Nanjing, in 2017 and his M.S. degree from the College of
Computer, National University of Defense Technology, Changsha, in 2019. He
is currently pursuing the Ph.D degree from the College of Computer, National
University of Defense Technology, Changsha. His research interests include
operating systems and software security.

Baosheng Wang received his B.S., M.S., and Ph.D. degrees in computer
science and technology from the National University of Defense Technology,
China. Currently, he is a professor with the School of Computer Science,
National University of Defense Technology, Changsha, China. His current
research interests include internet architecture, high performance computer
network and network security.

https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
http://pax.grsecurity.net/
https://grsecurity.net/PaX-presentation.pdf
https://syzkaller.appspot.com/bug?id=b0f0a3d34f0e9d551e1c0ab1fd911aaaa18bdcb9
https://syzkaller.appspot.com/bug?id=b0f0a3d34f0e9d551e1c0ab1fd911aaaa18bdcb9
https://syzkaller.appspot.com/bug?id=a84d6ad70b281bfc5632f272f745104fb43d219d
https://syzkaller.appspot.com/bug?id=a84d6ad70b281bfc5632f272f745104fb43d219d
https://syzkaller.appspot.com/bug?id=e4be30826c1b7777d69a9e3e20bc7b708ee8f82c
https://syzkaller.appspot.com/bug?id=e4be30826c1b7777d69a9e3e20bc7b708ee8f82c
https://syzkaller.appspot.com/bug?id=bf967d2c5ba62946c61152534c8b84823d848f05
https://syzkaller.appspot.com/bug?id=bf967d2c5ba62946c61152534c8b84823d848f05
https://syzkaller.appspot.com/bug?id=f2aebe90b8c56806b050a20b36f51ed6acabe802
https://syzkaller.appspot.com/bug?id=f2aebe90b8c56806b050a20b36f51ed6acabe802
https://syzkaller.appspot.com/bug?id=aaa35b314220404bbc2b1c66067b0f9a623baa89
https://syzkaller.appspot.com/bug?id=aaa35b314220404bbc2b1c66067b0f9a623baa89
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/Supervisor_Mode_Access_Prevention
https://en.wikipedia.org/wiki/Supervisor_Mode_Access_Prevention
https://en.wikipedia.org/wiki/Executable_space_protection
https://en.wikipedia.org/wiki/Executable_space_protection
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Return-oriented_programming

	Introduction
	Background
	Kernel Memory Management
	Weak vs. Strong Exploit Primitive
	Traditional Exploitation Techniques
	Exploitation through UAF
	Exploitation through OOB write
	A versatile exploitation strategy


	Transfer Weak Primitives to Strong Primitives via Thanos Objects
	Thanos Object
	Constructing Vulnerable Overlapped State

	Technical Approach
	Identify Thanos Objects from the kernel
	Identify Thanos object candidates
	Explore allocation path
	Explore release path

	Evaluate the Usability of Thanos Objects
	Pairing Vulnerabilities with Thanos Objects

	Implementation
	Evaluation
	Experiment Setup
	Thanos Object Identification
	 Overall results.
	Detailed results.
	False Reports

	Exploitation on Real-world Vulnerabilities
	Extra Benefits of Using Thanos Objects

	Discussion
	Related Work
	Conclusion
	Acknowledgement
	References
	Biography Section
	Biographies
	Danjun Liu
	Pengfei Wang
	Xu Zhou
	Wei Xie
	Gen Zhang
	Zhenhao Luo
	Tai Yue
	Baosheng Wang


